Radioactivity and radionuclides in deciduous teeth formed before the Fukushima-Daiichi Nuclear Power Plant accident

Author(s):  
Atsushi Takahashi ◽  
Mirei Chiba ◽  
Akira Tanahara ◽  
Jun Aida ◽  
Yoshinaka Shimizu ◽  
...  

Abstract The Fukushima-Daiichi Nuclear Power Plant (FNPP) accident in March 2011 released substantial amounts of radionuclides into the environment. We collected 4,957 deciduous teeth formed in children before the Fukushima accident to obtain precise control data for teeth formed after the accident. Radioactivity was measured using imaging plates (IP) and epidemiologically assessed using multivariate regression analysis. Additionally, we measured 90Sr, 137Cs, and natural radionuclides which might be present in teeth. Epidemiological studies of IP showed that the amount of radioactivity in teeth from Fukushima prefecture was similar to that from reference prefectures. We found that artificial radionuclides of 90Sr and 137Cs, which were believed to have originated from past nuclear disasters, and natural radionuclides including 40K and daughter nuclides in the 238U and 232Th series contributed to the generation of radioactivity in teeth. We also found no evidence to suggest that radionuclides originating from the FNPP accident significantly contaminated pre-existing teeth. This is the first large-scale investigation of radioactivity and radionuclides in teeth. The present findings will be indispensable for future studies of teeth formed after the FNPP accident, which will fall out over the next several years and might be more contaminated with radionuclides.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atsushi Takahashi ◽  
Mirei Chiba ◽  
Akira Tanahara ◽  
Jun Aida ◽  
Yoshinaka Shimizu ◽  
...  

AbstractThe Fukushima-Daiichi Nuclear Power Plant (FNPP) accident in March of 2011 released substantial amounts of radionuclides into the environment. We collected 4,957 deciduous teeth formed in children before the Fukushima accident to obtain precise control data for teeth formed after the accident. Radioactivity was measured using imaging plates (IP) and epidemiologically assessed using multivariate regression analysis. Additionally, we measured 90Sr, 137Cs, and natural radionuclides which might be present in teeth. Epidemiological studies of IP showed that the amount of radioactivity in teeth from Fukushima prefecture was similar to that from reference prefectures. We found that artificial radionuclides of 90Sr and 137Cs, which were believed to have originated from past nuclear disasters, and natural radionuclides including 40 K and daughter nuclides in the 238U and 232Th series contributed to the generation of radioactivity in teeth. We also found no evidence to suggest that radionuclides originating from the FNPP accident significantly contaminated pre-existing teeth. This is the first large-scale investigation of radioactivity and radionuclides in teeth. The present findings will be indispensable for future studies of teeth formed after the FNPP accident, which will fall out over the next several years and might be more contaminated with radionuclides.


2018 ◽  
Vol 15 (23) ◽  
pp. 7235-7242 ◽  
Author(s):  
Wen Yu ◽  
Mathew P. Johansen ◽  
Jianhua He ◽  
Wu Men ◽  
Longshan Lin

Abstract. In order to better understand the impact of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on a commercial marine species, neon flying squid (Ommastrephes bartramii) samples obtained from the northwestern Pacific in November 2011 were analyzed for a range of artificial and natural radionuclides (Cs-134, Cs-137, Ag-110m, U-238, Ra-226, and K-40). Short-lived radionuclides Cs-134 and Ag-110m released from the FDNPP accident were found in the samples, with an extremely high water-to-organism concentration ratio for Ag-110m (>2.9×104). While accident-derived radionuclides were present, their associated dose rates for the squid were far lower than the relevant benchmark of 10 µGy h−1. For human consumers ingesting these squid, the dose contribution from natural radionuclides, including Po-210, was far greater (>99.9 %) than that of Fukushima-accident radionuclides (<0.1 %). The whole-body to tissue and whole-body to gut concentration ratios were calculated and reported, providing a simple method to estimate the whole-body concentration in environmental monitoring programs, and filling a data gap for concentration ratios in cephalopods. Our results help fill data gaps in uptake of nuclear power plant radionuclides in the commercially important Cephalopoda class and add to scarce data on open-ocean nekton in the northwestern Pacific shortly after the Fukushima accident.


2016 ◽  
Vol 2 (4) ◽  
Author(s):  
Payot Frédéric ◽  
Seiler Jean-Marie

In the field of severe accident, the description of corium progression events is mainly carried out using integral calculation codes. However, these tools are usually based on bounding assumptions because of the high complexity of phenomena. The limitations associated with bounding situations [1] (e.g., steady-state situations and instantaneous whole core relocation in the lower head) led CEA to develop an alternative approach to improve the phenomenological description of the melt progression. The methodology used to describe the corium progression was designed to cover the accidental situations from the core meltdown to the molten core–concrete interaction (MCCI). This phenomenological approach is based on the available data (including learnings from TMI-2) on physical models and knowledge about the corium behavior. It provides emerging trends and best-estimate intermediate situations. As different phenomena are unknown, but strongly coupled, uncertainties at large scale for the reactor application must be taken into account. Furthermore, the analysis is complicated by the fact that these configurations are most probably three-dimensional (3D), all the more so because 3D effects are expected to have significant consequences for the corium progression and the resulting vessel failure. Such an analysis of the in-vessel melt progression was carried out for the Unit 1 of the Fukushima Dai-ichi Nuclear Power Plant. The core uncovering kinetics governs the core degradation and impacts the appearance of the first molten corium inside the core. The initial conditions used to carry out this analysis are based on the available results derived from codes such as the MELCOR calculation code [2]. The core degradation could then follow different ways: (1) Axial progression of the debris and the molten fuel through the lower support plate, or (2) lateral progression of the molten fuel through the shroud. On the basis of the Bali program results [3] and the TMI-2 accident observations [4], this work is focused on the consequences of a lateral melt progression (not excluding an axial progression through the support plate). Analysis of the events and the associated time sequence will be detailed. Besides, this analysis identifies some number of issues. Random calculations and statistical analysis of the results could be performed with calculation codes such as LEONAR–PROCOR codes [5]. This work was presented in the frame of the OECD/NEA/CSNI Benchmark Study of the Accident at the Fukushima Dai-ichi Nuclear Power Station (BSAF) project [6]. During the years of 2012 and 2014, the purpose of this project was both to study, by means of severe accident codes, the Fukushima accident in the three crippled units, until 6 days from the reactor shutdown, and to give information about, in particular, the location and composition of core debris.


Sign in / Sign up

Export Citation Format

Share Document