RF Magnetron Sputtering Processed Transparent Conductive Aluminum Doped ZnO thin Films with Excellent Optical and Electrical Properties

Author(s):  
Chunhu Zhao ◽  
Junfeng Liu ◽  
Yixin Guo ◽  
Yanlin Pan ◽  
Xiaobo Hu ◽  
...  

Abstract Aluminum doped ZnO thin films (AZO), which simultaneously transmit light and conduct electrical current, are widely applied in photovoltaic devices. To achieve high performance AZO thin films, the effects of RF magnetron sputtering conditions on the optical and electrical properties of the films has been explored. The optimized AZO thin films exhibit strong (002) orientated growth with hexagonal wurtzite structure. The minimum resistivity of 0.9Í10-3 Ω·cm, the highest carrier concentration of 2.8Í1020 cm-3, the best Hall mobility of 22.8 cm2·(V·s)-1 and average transmittance above 85% can be achieved at the optimum deposition condition of 0.2 Pa, 120 W and 200 °C. Considering the single parabolic band model, the bandgap shift by carrier concentration of the films can be attributed to the Burstein-Moss effect. The results indicate that RF magnetron sputtered AZO thin films are promising for solar cell applications relying on front contact layers.

2021 ◽  
Vol MA2021-01 (33) ◽  
pp. 1083-1083
Author(s):  
Alexei N. Nazarov ◽  
Andriy V Vasin ◽  
Andriy V. Rusavsky ◽  
Yuri V. Gomeniuk ◽  
Igor P. Tyagulskii ◽  
...  

2013 ◽  
Vol 774-776 ◽  
pp. 954-959
Author(s):  
Xiao Jing Wang

The electrical properties need to be improved, although Aluminum doped ZnO thin films (ZnO: Al) have been successfully deposited on transparent TPT substrates by our group. In this paper, ZnO: Al film was deposited on TPT substrate with SiO2 buffer layer by RF magnetron sputtering. The obtained film had a hexagonal structure and highly (002) preferred orientation. Compared with ZAO film without buffer layer, the lattice constant distortion of the film with buffer layer was decreased and the compressive stress was decreased by 9.2%, reaching to 0.779GPa. The carrier concentration and hall mobility of the film with buffer layer were both increased; especially the carrier concentration was enhanced by two orders of magnitude, reaching to 2.65×10+20/cm3. The resistivity of ZAO film with SiO2 buffer layer was about 7.6×10-3 Ω·cm and the average transmittance was over 70% in the range of 450~900nm.


Sign in / Sign up

Export Citation Format

Share Document