scholarly journals Myocardial deformation in patients with a single left ventricle using 2D cardiovascular magnetic resonance feature tracking: a case-control study

Author(s):  
Fabian Strodka ◽  
Jana Logoteta ◽  
Roman Schuwerk ◽  
Mona Salehi Ravesh ◽  
Dominik Daniel Gabbert ◽  
...  

Abstract Purpose Ventricular dysfunction is a well-known complication in single ventricle patients in Fontan circulation. As studies exclusively examining patients with a single left ventricle (SLV) are sparse, we assessed left ventricular (LV) function in SLV patients by using 2D-cardiovascular magnetic resonance (CMR) feature tracking (2D-CMR-FT) and 2D-speckle tracking echocardiography (2D-STE). Methods 54 SLV patients (11.4, 3.1–38.1 years) and 35 age-matched controls (12.3, 6.3–25.8 years) were included. LV global longitudinal, circumferential and radial strain (GLS, GCS, GRS) and strain rate (GLSR, GCSR, GRSR) were measured using 2D-CMR-FT. LV volumes, ejection fraction (LVEF) and mass were determined from short axis images. 2D-STE was applied in patients to measure peak systolic GLS and GLSR. In a subgroup analysis, we compared double inlet left ventricle (DILV) with tricuspid atresia (TA) patients. Results The population consisted of 19 DILV patients, 24 TA patients and 11 patients with diverse diagnoses. 52 patients were in NYHA class I and 2 patients were in class II. Median LVEF in patients was lower compared to controls (55.6% vs. 61.2%, p = 0.0001). 2D-CMR-FT demonstrated reduced GLS, GCS and GCSR values in patients compared to controls. LVEF correlated with GS values in patients (p < 0.05). There was no significant difference between GLS values from 2D-CMR-FT and 2D-STE in the patient group. LVEF, LV volumes, GS and GSR were not significantly different between DILV and TA patients. Conclusion Although most SLV patients had a preserved EF, our results suggest that, LV deformation and function may behave differently in SLV patients compared to healthy subjects.

Author(s):  
Fabian Strodka ◽  
Jana Logoteta ◽  
Roman Schuwerk ◽  
Mona Salehi Ravesh ◽  
Dominik Daniel Gabbert ◽  
...  

AbstractVentricular dysfunction is a well-known complication in single ventricle patients in Fontan circulation. As studies exclusively examining patients with a single left ventricle (SLV) are sparse, we assessed left ventricular (LV) function in SLV patients by using 2D-cardiovascular magnetic resonance (CMR) feature tracking (2D-CMR-FT) and 2D-speckle tracking echocardiography (2D-STE). 54 SLV patients (11.4, 3.1–38.1 years) and 35 age-matched controls (12.3, 6.3–25.8 years) were included. LV global longitudinal, circumferential and radial strain (GLS, GCS, GRS) and strain rate (GLSR, GCSR, GRSR) were measured using 2D-CMR-FT. LV volumes, ejection fraction (LVEF) and mass were determined from short axis images. 2D-STE was applied in patients to measure peak systolic GLS and GLSR. In a subgroup analysis, we compared double inlet left ventricle (DILV) with tricuspid atresia (TA) patients. The population consisted of 19 DILV patients, 24 TA patients and 11 patients with diverse diagnoses. 52 patients were in NYHA class I and 2 patients were in class II. Most SLV patients had a normal systolic function but median LVEF in patients was lower compared to controls (55.6% vs. 61.2%, p = 0.0001). 2D-CMR-FT demonstrated reduced GLS, GCS and GCSR values in patients compared to controls. LVEF correlated with GS values in patients (p < 0.05). There was no significant difference between GLS values from 2D-CMR-FT and 2D-STE in the patient group. LVEF, LV volumes, GS and GSR (from 2D-CMR-FT) were not significantly different between DILV and TA patients. Although most SLV patients had a preserved EF derived by CMR, our results suggest that, LV deformation and function may behave differently in SLV patients compared to healthy subjects.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Chengjie Gao ◽  
Yajie Gao ◽  
Jingyu Hang ◽  
Meng Wei ◽  
Jingbo Li ◽  
...  

Abstract Background A considerable number of non-ischemic dilated cardiomyopathy (NDCM) patients had been found to have normalized left ventricular (LV) size and systolic function with tailored medical treatments. Accordingly, we aimed to evaluate if strain parameters assessed by cardiovascular magnetic resonance (CMR) feature tracking (FT) analysis could predict the NDCM recovery. Methods 79 newly diagnosed NDCM patients who underwent baseline and follow-up CMR scans were enrolled. Recovery was defined as a current normalized LV size and systolic function evaluated by CMR. Results Among 79 patients, 21 (27%) were confirmed recovered at a median follow-up of 36 months. Recovered patients presented with faster heart rates (HR) and larger body surface area (BSA) at baseline (P < 0.05). Compared to unrecovered patients, recovered pateints had a higher LV apical radial strain divided by basal radial strain (RSapi/bas) and a lower standard deviation of time to peak radial strain in 16 segments of the LV (SD16-TTPRS). According to a multivariate logistic regression model, RSapi/bas (P = 0.035) and SD16-TTPRS (P = 0.012) resulted as significant predictors for differentiation of recovered from unrecovered patients. The sensitivity and specificity of RSapi/bas and SD16-TTPRS for predicting recovered conditions were 76%, 67%, and 91%, 59%, with the area under the curve of 0.75 and 0.76, respectively. Further, Kaplan Meier survival analysis showed that patients with RSapi/bas ≥ 0.95% and SD16-FTPRS ≤ 111 ms had the highest recovery rate (65%, P = 0.027). Conclusions RSapi/bas and CMR SD16-TTPRS may be used as non-invasive parameters for predicting LV recovery in NDCM. This finding may be beneficial for subsequent treatments and prognosis of NDCM patients. Registration number: ChiCTR-POC-17012586.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Alderighi ◽  
A Baritussio ◽  
O Ozden Tok ◽  
M Perazzolo Marra ◽  
S Iliceto ◽  
...  

Abstract Background Clinically manifest cardiac sarcoidosis (CS) has a prevalence of 5%, but is more frequent in autoptic series (25%). Diagnosis is multiparametric and relies on clinical criteria and imaging findings, although a certain diagnosis, especially in the case of isolated CS (ICS), can only be based on endomyocardial biopsy. Cardiovascular magnetic resonance (CMR) has a comprehensive role in the assessment of CS: left ventricular (LV) dysfunction and extent of late gadolinium enhancement (LGE)are important predictors of prognosis, T2 mapping provides information on disease activity and global longitudinal strain (GLS) analysis can uncover subclinical LV impairment. Purpose To assess the prevalence of CS by CMR in patients with biopsy-proven extracardiacsarcoidosis (ECS); to describe the imaging characteristics of patients with ECS and those with high clinical suspicionof ICS; to investigate the contribution of more recent techniques to the diagnosis of CS alongside traditional LGE assessment. Methods We retrospectively enrolled 84 patients (66% males, mean age 59±13 years) referred to our centreforsuspected CS (biopsy-proven ECS, n=61; clinical presentation suggestive of CS,, n=23). CMR was performed on a 1.5T scanner, with a protocol comprehensive of biventricular functional assessment and post-contrast images; T2-STIR images (n=30), native myocardial T1 mapping (n=24) and T2 mapping (n=19) were also performed in selected patients. Tissue tracking analysis was perfomed in all patients using a dedicated software. Results Based on CMR findings, 35 patients (42%) with ECS did not show cardiac involvement (SS), 26 (31%) showed both cardiac and systemic involvement (CS-SS) and 23 (27%) had evidence of ICS (ICS). 43% of patients had history of arrhythmias, but life-threatening tachyarrhythmiaswere more frequent in patients with CS (p=0.02).Patients with CS had significantly lower LVEF (p&lt;0,01), larger LV volumes (p&lt;0,01) and greater LV mass (p&lt;0,01). GLS values were impaired in all the groups but significantly more in patients with CS (p&lt;0,01). With regards to LGE distribution, ICS patients showed a higher number of segments involved (p=0,011) as compared to CS patients. T2-STIRimages were positive in 3 out of 30 patients; T2 mapping detected myocardial oedema in 1 patient with negative T2- STIR and was positive in 7 who did not undergo traditional oedema evaluation. T1 mapping mainly confirmed the results provided by LGE, but was altered in 1 patient who could not receive gadolinium. Conclusions CMR findings consistent with CS were found in 49 patients referred for suspected CS. Patients with cardiac involvement, particularly if isolated, had significantly lower LVEF, greater LV volumes and more impaired GLS. Patients with SS, despite a normal LV function, showed mildly impaired GLS, subtending subclinical cardiac involvement. Funding Acknowledgement Type of funding source: None


2021 ◽  
Author(s):  
Hai-Yan Ma ◽  
Xi-Hui Zhao ◽  
Jian Tao ◽  
Pan Liu ◽  
Rong-Pin Wang

Abstract This study investigated the feasibility of using cardiovascular magnetic resonance feature tracking (CMR-FT) for analysis of left ventricular (LV) strain and strain rate in patients with non-ischemic dilated cardiomyopathy (NIDCM) combined with ventricular arrhythmias (VAs). And evaluated the correlation between the LV global strain and left ventricular ejection (LVEF). We performed a retrospective study in a cohort of 34 consecutive patients with NIDCM combined with VAs who underwent CMR examination in our hospital between January 2016 and December 2019. Global and segmental peak values of LV longitudinal, circumferential, radial strain, and systolic strain rate were analyzed. Pearson analysis was calculated to assess the correlation of LV global deformation and LVEF as well as the correlation of between LV global deformation. Compared with the healthy controls, the global peak radial strain (GPRS), global peak circumferential strain (GPCS), and global peak longitudinal strain (GPLS) were significantly reduced in patients with NIDCM combined with VAs (P < 0.001, respectively). Additionally, Pearson analysis showed GPCS negatively correlated with LVEF (r=-0.946, P < 0.001), GPLS negatively correlated with LVEF (r=-0.860, P < 0.001), and GPRS positively correlated with LVEF (r = 0.920, P < 0.001). CMR-FT is a feasible and promising technique for assessing LV myocardial deformation of patients with NIDCM combined with VAs. And, GPCS was better negatively correlated with LVEF and higher reproducibility of intra-class correlation coefficient (ICC), which can help to guide clinical treatment and have great implication on clinical decision.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Vasquez ◽  
V Puntmann ◽  
E Nagel

Abstract Introduction Cardiovascular magnetic resonance (CMR) feature tracking (FT) is based on the recognition of endocardial features obtained during standard CMR cine imaging to be tracked and followed throughout the cardiac cycle. Global longitudinal strain (GLS) has been proposed as a superior measure for diagnosis and prognosis than ejection fraction (EF). However, EF remains an important primary parameter to describe cardiac function. A rapid determination of GLS based on three long axis views (LAX) allows for a simultaneous calculation of EF without additional imaging or post-processing promising a significant reduction of scan and post-processing time. Purpose The purpose of this work is to compare the LV volumes and EF obtained during assessment of GLS based on CMR feature tracking with standard analysis of a short axis (SAX) stack used as the reference standard. Methods 75 consecutive patients underwent a routine clinical scan obtaining a full SAX stack as well as 3 standard LAX views using either 3-Tesla or 1,5-Tesla clinical scanners. We determined LV volumes and EF based on the reference standard as well as feature tracking analysis with additional GLS. A p value <0.01 was considered statistically significant. Results Mean EF was 45.9% using standard SAX (range, 13%-72%) and 51.1% using triplanar feature tracking (r=0.950; p<0.0001, figure 1A). Bland-Altman analysis showed a systematic bias of 5,27%; without proportional bias (figure 1B). End-diastolic volumes (r=0,975; p<0.0001) and end-systolic volumes (r=0.985; p<0.0001) demonstrated similar results. Mean GLS was −17.3% (range: −30,7% to −3,3%) and was significantly correlated with standard EF (r=−0,884; p<0.0001). Classification of EF into categories: reduced, mid-range or preserved (<40%, 40–49%, ≥50%) remain unchanged in 79% of patients when using EF by feature tracking analysis. Twelve of 16 reclassifications occurred in the mid-range category. Figure 1 Conclusion There is a good correlation between EF obtained by rapid post-processing of GLS with EF based on a full SAX stack resulting in an identical categorization in 79% of patients. Reduction of EF within the mid-range might be best assesses by the standard SAX stack.


2017 ◽  
Vol 20 (1) ◽  
pp. 026 ◽  
Author(s):  
Nan Cheng ◽  
Liuquan Cheng ◽  
Rong Wang ◽  
Lin Zhang ◽  
Changqing Gao

Objective: The aim of this study was to quantify left ventricular torsion by newly applied cardiovascular magnetic resonance feature tracking (CMR-FT), and to evaluate the clinical value of the ventricular torsion as a sensitive indicator of cardiac function by comparison of preoperative and postoperative torsion.Methods: A total of 54 volunteers and 36 patients with previous myocardial infarction (MI) and LV ejection fraction (EF) between 30%-50% were screened preoperatively or postoperatively by MRI. The patients’ short axis views of the whole heart were acquired, and all patients had a scar area >75% in at least one of the anterior or inferior segments. Their apical and basal rotation values were analyzed by feature tracking, and the correlation analysis was performed for the improvement of LV torsion and ejection fraction after CABG. The intra- and inter-observer reliabilities of torsion measured by CMR-FT were assessed.Results: In normal hearts, the apex rotated counterclockwise in the systolic period with the peak rotation as 10.2 ± 4.8°, and the base rotated clockwise as the peak value was 7.0 ± 3.3°. There was a timing hiatus between the apex and base untwisting, during which period the heart recoils and its suction sets the stage for the following rapid filling period. The postoperative torsion and rotation significantly improved compared with preoperative ones. However, the traditional indicator of cardiac function, ejection fraction, didn’t show significant improvement.Conclusion: Left ventricular torsion derived from CMR-FT, which does not require specialized CMR sequences, was sensitive to patients with low ejection fraction whose cardiac function significantly improved after CABG. The rapid acquisition of this measurement has potential for the assessment of cardiac function in clinical practice. 


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Johan Kihlberg ◽  
Vikas Gupta ◽  
Henrik Haraldsson ◽  
Andreas Sigfridsson ◽  
Sebastian I. Sarvari ◽  
...  

Abstract Background Several cardiovascular magnetic resonance (CMR) techniques can measure myocardial strain and torsion with high accuracy. The purpose of this study was to compare displacement encoding with stimulated echoes (DENSE), tagging and feature tracking (FT) for measuring circumferential and radial myocardial strain and myocardial torsion in order to assess myocardial function and infarct scar burden both at a global and at a segmental level. Method 116 patients with a high likelihood of coronary artery disease (European SCORE > 15%) underwent CMR examination including cine images, tagging, DENSE and late gadolinium enhancement (LGE) in the short axis direction. In total, 97 patients had signs of myocardial disease and 19 had no abnormalities in terms of left ventricular (LV) wall mass index, LV ejection fraction, wall motion, LGE or a history of myocardial infarction. Thirty-four patients had myocardial infarct scar with a transmural LGE extent (transmurality) that exceeded 50% of the wall thickness in at least one segment. Global circumferential strain (GCS) and global radial strain (GRS) was analyzed using FT of cine loops, deformation of tag lines or DENSE displacement. Results DENSE and tagging both showed high sensitivity (82% and 71%) at a specificity of 80% for the detection of segments with > 50% LGE transmurality, and receiver operating characteristics (ROC) analysis showed significantly higher area under the curve-values (AUC) for DENSE (0.87) than for tagging (0.83, p < 0.001) and FT (0.66, p = 0.003). GCS correlated with global LGE when determined with DENSE (r = 0.41), tagging (r = 0.37) and FT (r = 0.15). GRS had a low but significant negative correlation with LGE; DENSE r = − 0.10, FT r = − 0.07 and tagging r = − 0.16. Torsion from DENSE and tagging had a weak correlation (− 0.20 and − 0.22 respectively) with global LGE. Conclusion Circumferential strain from DENSE detected segments with > 50% scar with a higher AUC than strain determined from tagging and FT at a segmental level. GCS and torsion computed from DENSE and tagging showed similar correlation with global scar size, while when computed from FT, the correlation was lower.


Sign in / Sign up

Export Citation Format

Share Document