The Improvement of Torsion Assessed by Cardiovascular Magnetic Resonance Feature Tracking after Coronary Artery Bypass Grafting: A Sensitive Index of Cardiac Function

2017 ◽  
Vol 20 (1) ◽  
pp. 026 ◽  
Author(s):  
Nan Cheng ◽  
Liuquan Cheng ◽  
Rong Wang ◽  
Lin Zhang ◽  
Changqing Gao

Objective: The aim of this study was to quantify left ventricular torsion by newly applied cardiovascular magnetic resonance feature tracking (CMR-FT), and to evaluate the clinical value of the ventricular torsion as a sensitive indicator of cardiac function by comparison of preoperative and postoperative torsion.Methods: A total of 54 volunteers and 36 patients with previous myocardial infarction (MI) and LV ejection fraction (EF) between 30%-50% were screened preoperatively or postoperatively by MRI. The patients’ short axis views of the whole heart were acquired, and all patients had a scar area >75% in at least one of the anterior or inferior segments. Their apical and basal rotation values were analyzed by feature tracking, and the correlation analysis was performed for the improvement of LV torsion and ejection fraction after CABG. The intra- and inter-observer reliabilities of torsion measured by CMR-FT were assessed.Results: In normal hearts, the apex rotated counterclockwise in the systolic period with the peak rotation as 10.2 ± 4.8°, and the base rotated clockwise as the peak value was 7.0 ± 3.3°. There was a timing hiatus between the apex and base untwisting, during which period the heart recoils and its suction sets the stage for the following rapid filling period. The postoperative torsion and rotation significantly improved compared with preoperative ones. However, the traditional indicator of cardiac function, ejection fraction, didn’t show significant improvement.Conclusion: Left ventricular torsion derived from CMR-FT, which does not require specialized CMR sequences, was sensitive to patients with low ejection fraction whose cardiac function significantly improved after CABG. The rapid acquisition of this measurement has potential for the assessment of cardiac function in clinical practice. 

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109164 ◽  
Author(s):  
Johannes T. Kowallick ◽  
Pablo Lamata ◽  
Shazia T. Hussain ◽  
Shelby Kutty ◽  
Michael Steinmetz ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Alicia M. Maceira ◽  
Sara Guardiola ◽  
Carmen Ripoll ◽  
Juan Cosin-Sales ◽  
Vicente Belloch ◽  
...  

Abstract Background Cocaine is an addictive, sympathomimetic drug with potentially lethal effects. We have previously shown with cardiovascular magnetic resonance (CMR) the presence of cardiovascular involvement in a significant percentage of consecutive asymptomatic cocaine addicts. CMR with feature-tracking analysis (CMR-FT) allows for the quantification of myocardial deformation which may detect preclinical involvement. Therefore, we aimed to assess the effects of cocaine on the left ventricular myocardium in a group of asymptomatic cocaine users with CMR-FT. Methods In a cohort of asymptomatic cocaine addicts (CA) who had been submitted to CMR at 3 T, we used CMR-FT to measure strain, strain rate and dyssynchrony index in CA with mildly decreased left ventricular ejection fraction (CA-LVEFd) and in CA with preserved ejection fraction (CA-LVEFp). We also measured these parameters in 30 age-matched healthy subjects. Results There were no differences according to age. Significant differences were seen in global longitudinal, radial and circumferential strain, in global longitudinal and radial strain rate and in radial and circumferential dyssynchrony index among the groups, with the lowest values in CA-LVEFd and intermediate values in CA-LVEFp. Longitudinal, radial and circumferential strain values were significantly lower in CA-LVEFp with respect to controls. Conclusions CA-LVEFp show decreased systolic strain and strain rate values, with intermediate values between healthy controls and CA-LVEFd. Signs suggestive of dyssynchrony were also detected. In CA, CMR-FT based strain analysis can detect early subclinical myocardial involvement.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Vasquez ◽  
V Puntmann ◽  
E Nagel

Abstract Introduction Cardiovascular magnetic resonance (CMR) feature tracking (FT) is based on the recognition of endocardial features obtained during standard CMR cine imaging to be tracked and followed throughout the cardiac cycle. Global longitudinal strain (GLS) has been proposed as a superior measure for diagnosis and prognosis than ejection fraction (EF). However, EF remains an important primary parameter to describe cardiac function. A rapid determination of GLS based on three long axis views (LAX) allows for a simultaneous calculation of EF without additional imaging or post-processing promising a significant reduction of scan and post-processing time. Purpose The purpose of this work is to compare the LV volumes and EF obtained during assessment of GLS based on CMR feature tracking with standard analysis of a short axis (SAX) stack used as the reference standard. Methods 75 consecutive patients underwent a routine clinical scan obtaining a full SAX stack as well as 3 standard LAX views using either 3-Tesla or 1,5-Tesla clinical scanners. We determined LV volumes and EF based on the reference standard as well as feature tracking analysis with additional GLS. A p value <0.01 was considered statistically significant. Results Mean EF was 45.9% using standard SAX (range, 13%-72%) and 51.1% using triplanar feature tracking (r=0.950; p<0.0001, figure 1A). Bland-Altman analysis showed a systematic bias of 5,27%; without proportional bias (figure 1B). End-diastolic volumes (r=0,975; p<0.0001) and end-systolic volumes (r=0.985; p<0.0001) demonstrated similar results. Mean GLS was −17.3% (range: −30,7% to −3,3%) and was significantly correlated with standard EF (r=−0,884; p<0.0001). Classification of EF into categories: reduced, mid-range or preserved (<40%, 40–49%, ≥50%) remain unchanged in 79% of patients when using EF by feature tracking analysis. Twelve of 16 reclassifications occurred in the mid-range category. Figure 1 Conclusion There is a good correlation between EF obtained by rapid post-processing of GLS with EF based on a full SAX stack resulting in an identical categorization in 79% of patients. Reduction of EF within the mid-range might be best assesses by the standard SAX stack.


Author(s):  
Fabian Strodka ◽  
Jana Logoteta ◽  
Roman Schuwerk ◽  
Mona Salehi Ravesh ◽  
Dominik Daniel Gabbert ◽  
...  

AbstractVentricular dysfunction is a well-known complication in single ventricle patients in Fontan circulation. As studies exclusively examining patients with a single left ventricle (SLV) are sparse, we assessed left ventricular (LV) function in SLV patients by using 2D-cardiovascular magnetic resonance (CMR) feature tracking (2D-CMR-FT) and 2D-speckle tracking echocardiography (2D-STE). 54 SLV patients (11.4, 3.1–38.1 years) and 35 age-matched controls (12.3, 6.3–25.8 years) were included. LV global longitudinal, circumferential and radial strain (GLS, GCS, GRS) and strain rate (GLSR, GCSR, GRSR) were measured using 2D-CMR-FT. LV volumes, ejection fraction (LVEF) and mass were determined from short axis images. 2D-STE was applied in patients to measure peak systolic GLS and GLSR. In a subgroup analysis, we compared double inlet left ventricle (DILV) with tricuspid atresia (TA) patients. The population consisted of 19 DILV patients, 24 TA patients and 11 patients with diverse diagnoses. 52 patients were in NYHA class I and 2 patients were in class II. Most SLV patients had a normal systolic function but median LVEF in patients was lower compared to controls (55.6% vs. 61.2%, p = 0.0001). 2D-CMR-FT demonstrated reduced GLS, GCS and GCSR values in patients compared to controls. LVEF correlated with GS values in patients (p < 0.05). There was no significant difference between GLS values from 2D-CMR-FT and 2D-STE in the patient group. LVEF, LV volumes, GS and GSR (from 2D-CMR-FT) were not significantly different between DILV and TA patients. Although most SLV patients had a preserved EF derived by CMR, our results suggest that, LV deformation and function may behave differently in SLV patients compared to healthy subjects.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Chengjie Gao ◽  
Yajie Gao ◽  
Jingyu Hang ◽  
Meng Wei ◽  
Jingbo Li ◽  
...  

Abstract Background A considerable number of non-ischemic dilated cardiomyopathy (NDCM) patients had been found to have normalized left ventricular (LV) size and systolic function with tailored medical treatments. Accordingly, we aimed to evaluate if strain parameters assessed by cardiovascular magnetic resonance (CMR) feature tracking (FT) analysis could predict the NDCM recovery. Methods 79 newly diagnosed NDCM patients who underwent baseline and follow-up CMR scans were enrolled. Recovery was defined as a current normalized LV size and systolic function evaluated by CMR. Results Among 79 patients, 21 (27%) were confirmed recovered at a median follow-up of 36 months. Recovered patients presented with faster heart rates (HR) and larger body surface area (BSA) at baseline (P < 0.05). Compared to unrecovered patients, recovered pateints had a higher LV apical radial strain divided by basal radial strain (RSapi/bas) and a lower standard deviation of time to peak radial strain in 16 segments of the LV (SD16-TTPRS). According to a multivariate logistic regression model, RSapi/bas (P = 0.035) and SD16-TTPRS (P = 0.012) resulted as significant predictors for differentiation of recovered from unrecovered patients. The sensitivity and specificity of RSapi/bas and SD16-TTPRS for predicting recovered conditions were 76%, 67%, and 91%, 59%, with the area under the curve of 0.75 and 0.76, respectively. Further, Kaplan Meier survival analysis showed that patients with RSapi/bas ≥ 0.95% and SD16-FTPRS ≤ 111 ms had the highest recovery rate (65%, P = 0.027). Conclusions RSapi/bas and CMR SD16-TTPRS may be used as non-invasive parameters for predicting LV recovery in NDCM. This finding may be beneficial for subsequent treatments and prognosis of NDCM patients. Registration number: ChiCTR-POC-17012586.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Haotian Gu ◽  
Rong Bing ◽  
Calvin Chin ◽  
Lingyun Fang ◽  
Audrey C. White ◽  
...  

Abstract Background First-phase ejection fraction (EF1; the ejection fraction measured during active systole up to the time of maximal aortic flow) measured by transthoracic echocardiography (TTE) is a powerful predictor of outcomes in patients with aortic stenosis. We aimed to assess whether cardiovascular magnetic resonance (CMR) might provide more precise measurements of EF1 than TTE and to examine the correlation of CMR EF1 with measures of fibrosis. Methods In 141 patients with at least mild aortic stenosis, we measured CMR EF1 from a short-axis 3D stack and compared its variability with TTE EF1, and its associations with myocardial fibrosis and clinical outcome (aortic valve replacement (AVR) or death). Results Intra- and inter-observer variation of CMR EF1 (standard deviations of differences within and between observers of 2.3% and 2.5% units respectively) was approximately 50% that of TTE EF1. CMR EF1 was strongly predictive of AVR or death. On multivariable Cox proportional hazards analysis, the hazard ratio for CMR EF1 was 0.93 (95% confidence interval 0.89–0.97, p = 0.001) per % change in EF1 and, apart from aortic valve gradient, CMR EF1 was the only imaging or biochemical measure independently predictive of outcome. Indexed extracellular volume was associated with AVR or death, but not after adjusting for EF1. Conclusions EF1 is a simple robust marker of early left ventricular impairment that can be precisely measured by CMR and predicts outcome in aortic stenosis. Its measurement by CMR is more reproducible than that by TTE and may facilitate left ventricular structure–function analysis.


Sign in / Sign up

Export Citation Format

Share Document