Cardiac energetics alteration in chronic hypoxia rat model: a non invasive in vivo 31P magnetic resonance spectroscopy experimental study

Author(s):  
Xiaohan Yuan ◽  
Xiaomei Zhu ◽  
Yang Chen ◽  
Wangyan Liu ◽  
Wen Qian ◽  
...  

Abstract Background: Energetics alteration plays a key role in the process of myocardial injury in chronic hypoxic diseases (CHD). 31P magnetic resonance spectroscopy (MRS) can investigate alterations in cardiac energetics in vivo. This study was aimed to characterize the potential value of 31P MRS in evaluating cardiac energetics alteration of chronic hypoxia rats (CHR).Methods: Twenty-four CHRs were induced by SU5416 combined with hypoxia, and six rats were raised as control group. 31P MRS was performed weekly and the ratio of concentrations of phosphocreatine (PCr) to adenosine triphosphate (ATP) (PCr/ATP) was obtained. The index of cardiac structure and systolic function parameters, including the right ventricular function (RVEF), right ventricular end-diastolic volume index (RVEDVi), right ventricular end-systolic volume index (RVESVi), the left ventricular function parameters were also measured.Results: The declension of resting cardiac PCr/ATP ratio in CHR was observed at the 1st week, compared to control group (2.90±0.35 vs. 3.31±0.45, p =0.045), while the RVEF,RVEDVi and RVESVi decreased at the 2nd week (p<0.05). The PCr/ATP ratio displayed a significant correlation with RVEF(r = 0.605, p = 0.001),RVEDVi and RVESVi (r = -0.661, r = -0.703; p<0.001).Conclusions: 31P MRS can early detect the cardiac energetics alteration in CHR model before the onset of ventricular dysfunction. The decrease of PCr/ATP ratio likely revealed myocardial injury and cardiac dysfunction.

2021 ◽  
pp. 1-11
Author(s):  
Xiaohan Yuan ◽  
Xiaomei Zhu ◽  
Yang Chen ◽  
Wangyan Liu ◽  
Wen Qian ◽  
...  

BACKGROUND: Energetics alteration plays a crucial role in the myocardial injury process in chronic hypoxia diseases (CHD). 31P magnetic resonance spectroscopy (MRS) can investigate alterations in cardiac energetics in vivo. OBJECTIVE: To characterize the potential value of 31P MRS in evaluating cardiac energetics alteration of chronic hypoxic rats (CHRs). METHODS: Twenty-four CHRs were induced by SU5416 combined with hypoxia and divided into four groups according to the modeling time of one, two, three and five weeks, respectively. Control group also contains six rats. 31P MRS was performed weekly and the ratio of concentrations of phosphocreatine (PCr) to adenosine triphosphate (ATP) (PCr/ATP) was obtained. In addition, the cardiac structure index and systolic function parameters, including the right ventricular ejection fraction (RVEF), right ventricular end-diastolic volume index (RVEDVi), right ventricular end-systolic volume index (RVESVi), and the left ventricular function parameters, were measured. RESULTS: Decreased resting cardiac PCr/ATP ratio in CHRs was observed at the first week, compared to the control group (2.90±0.35 vs. 3.31±0.45, p = 0.045), while the RVEF, RVEDVi, and RVESVi decreased at the second week (p <  0.05). The PCr/ATP ratio displayed a significant correlation with RVEF (r = 0.605, p = 0.001), RVEDVi, and RVESVi (r = –0.661, r = –0.703; p <  0.001). CONCLUSIONS: 31P MRS can easily detect the cardiac energetics alteration in a CHR model before the onset of ventricular dysfunction. The decreased PCr/ATP ratio likely reveales myocardial injury and cardiac dysfunction.


This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.


Sign in / Sign up

Export Citation Format

Share Document