normal myocardium
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Sorin Giusca ◽  
Henning Steen ◽  
Moritz Montenbruck ◽  
Amit R. Patel ◽  
Burkert Pieske ◽  
...  

Abstract Aim To evaluate the ability of single heartbeat fast-strain encoded (SENC) cardiovascular magnetic resonance (CMR) derived myocardial strain to discriminate between different forms of left ventricular (LV) hypertrophy (LVH). Methods 314 patients (228 with hypertensive heart disease (HHD), 45 with hypertrophic cardiomyopathy (HCM), 41 with amyloidosis, 22 competitive athletes, and 33 healthy controls) were systematically analysed. LV ejection fraction (LVEF), LV mass index and interventricular septal (IVS) thickness, T1 mapping and atypical late gadolinium enhancement (LGE) were assessed. In addition, the percentage of LV myocardial segments with strain ≤ − 17% (%normal myocardium) was determined. Results Patients with amyloidosis and HCM exhibited the highest IVS thickness (17.4 ± 3.3 mm and 17.4 ± 6 mm, respectively, p < 0.05 vs. all other groups), whereas patients with amyloidosis showed the highest LV mass index (95.1 ± 20.1 g/m2, p < 0.05 vs all others) and lower LVEF compared to controls (50.5 ± 9.8% vs 59.2 ± 5.5%, p < 0.05). Analysing subjects with mild to moderate hypertrophy (IVS 11–15 mm), %normal myocardium exhibited excellent and high precision, respectively for the differentiation between athletes vs. HCM (sensitivity and specificity = 100%, Area under the curve; AUC%normalmyocardium = 1.0, 95%CI = 0.85–1.0) and athletes vs. HHD (sensitivity = 83%, specificity = 75%, AUC%normalmyocardium = 0.85, 95%CI = 0.78–0.90). Combining %normal myocardial strain with atypical LGE provided high accuracy also for the differentiation of HHD vs. HCM (sensitivity = 82%, specificity = 100%, AUCcombination = 0.92, 95%CI = 0.88–0.95) and HCM vs. amyloidosis (sensitivity = 83%, specificity = 100%, AUCcombination = 0.83, 95%CI = 0.60–0.96). Conclusion Fast-SENC derived myocardial strain is a valuable tool for differentiating between athletes vs. HCM and athletes vs. HHD. Combining strain and LGE data is useful for differentiating between HHD vs. HCM and HCM vs. cardiac amyloidosis.



Author(s):  
Sorin Giusca ◽  
Grigorios Korosoglou ◽  
Moritz Montenbruck ◽  
Blaž Geršak ◽  
Arne Kristian Schwarz ◽  
...  

Background: Our goal was to evaluate the ability of cardiovascular magnetic resonance for detecting and predicting cardiac dysfunction in patients receiving cancer therapy. Left ventricular ejection fraction, global and regional strain utilizing fast-strain-encoded, T1 and T2 mapping, and cardiac biomarkers (troponin and BNP [brain natriuretic peptide]) were analyzed. METHODS: Sixty-one patients (47 with breast cancer, 11 with non-Hodgkin lymphoma, and 3 with Hodgkin lymphoma) underwent cardiovascular magnetic resonance scans at baseline and at regular intervals during 2 years of follow-up. The percentage of all left ventricular myocardial segments with strain ≤−17% (normal myocardium [%]) was analyzed. Clinical cardiotoxicity (CTX) and sub-CTX were defined according to standard measures. Results: Nine (15%) patients developed CTX, 26 (43%) had sub-CTX. Of the 35 patients with CTX or sub-CTX, 24 (69%) were treated with cardioprotective medications and showed recovery of cardiac function. The amount of normal myocardium (%) exhibited markedly higher accuracy for the detection of CTX and sub-CTX compared with left ventricular ejection fraction, T1, and T2 mapping as well as troponin I (Δareas under the curve=0.20, 0.24, and 0.46 for normal myocardium (%) versus left ventricular ejection fraction, troponin I, and T1 mapping, P <0.001 for all). In addition, normal myocardium (%) at baseline accurately identified patients with subsequent CTX ( P <0.001), which was not achieved by any other markers. Conclusions: Normal myocardium (%) derived by fast-strain-encoded cardiovascular magnetic resonance, is an accurate and sensitive tool that can establish cardiac safety in patients with cancer undergoing cardiotoxic chemotherapy not only for the early detection but also for the prediction of those at risk of developing CTX. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03543228.



2021 ◽  
Vol 322 ◽  
pp. 284-285
Author(s):  
Julian Cheong Kiat Tay ◽  
Jonathan Yap
Keyword(s):  


2020 ◽  
Author(s):  
Bastiaan J D Boukens ◽  
Michael Dacey ◽  
Veronique M F Meijborg ◽  
Michiel J Janse ◽  
Joseph Hadaya ◽  
...  

Abstract Aims Enhanced sympathetic activity during acute ischaemia is arrhythmogenic, but the underlying mechanism is unknown. During ischaemia, a diastolic current flows from the ischaemic to the non-ischaemic myocardium. This ‘injury’ current can cause ventricular premature beats (VPBs) originating in the non-ischaemic myocardium, especially during a deeply negative T wave in the ischaemic zone. We reasoned that shortening of repolarization in myocardium adjacent to ischaemic myocardium increases the ‘injury’ current and causes earlier deeply negative T waves in the ischaemic zone, and re-excitation of the normal myocardium. We tested this hypothesis by activation and repolarization mapping during stimulation of the left stellate ganglion (LSG) during left anterior descending coronary artery (LAD) occlusion. Methods and results In nine pigs, five subsequent episodes of acute ischaemia, separated by 20 min of reperfusion, were produced by occlusion of the LAD and 121 epicardial local unipolar electrograms were recorded. During the third occlusion, left stellate ganglion stimulation (LSGS) was initiated after 3 min for a 30-s period, causing a shortening of repolarization in the normal myocardium by about 100 ms. This resulted in more negative T waves in the ischaemic zone and more VPBs than during the second, control, occlusion. Following the decentralization of the LSG (including removal of the right stellate ganglion and bilateral cervical vagotomy), fewer VPBs occurred during ischaemia without LSGS. During LSGS, the number of VPBs was similar to that recorded before decentralization. Conclusion LSGS, by virtue of shortening of repolarization in the non-ischaemic myocardium by about 100 ms, causes deeply negative T waves in the ischaemic tissue and VPBs originating from the normal tissue adjacent to the ischaemic border.



2020 ◽  
Vol 41 (45) ◽  
pp. 4332-4345 ◽  
Author(s):  
Mariangela Scalise ◽  
Michele Torella ◽  
Fabiola Marino ◽  
Maria Ravo ◽  
Giorgio Giurato ◽  
...  

Abstract Aims Cardiac myxomas usually develop in the atria and consist of an acid-mucopolysaccharide-rich myxoid matrix with polygonal stromal cells scattered throughout. These human benign tumours are a valuable research model because of the rarity of cardiac tumours, their clinical presentation and uncertain origin. Here, we assessed whether multipotent cardiac stem/progenitor cells (CSCs) give rise to atrial myxoma tissue. Methods and results Twenty-three myxomas were collected and analysed for the presence of multipotent CSCs. We detected myxoma cells positive for c-kit (c-kitpos) but very rare Isl-1 positive cells. Most of the c-kitpos cells were blood lineage-committed CD45pos/CD31pos cells. However, c-kitpos/CD45neg/CD31neg cardiac myxoma cells expressed stemness and cardiac progenitor cell transcription factors. Approximately ≤10% of the c-kitpos/CD45neg/CD31neg myxoma cells also expressed calretinin, a characteristic of myxoma stromal cells. In vitro, the c-kitpos/CD45neg/CD31neg myxoma cells secrete chondroitin-6-sulfate and hyaluronic acid, which are the main components of gelatinous myxoma matrix in vivo. In vitro, c-kitpos/CD45neg/CD31neg myxoma cells have stem cell properties being clonogenic, self-renewing, and sphere forming while exhibiting an abortive cardiac differentiation potential. Myxoma-derived CSCs possess a mRNA and microRNA transcriptome overall similar to normal myocardium-derived c-kitpos/CD45neg/CD31negCSCs , yet showing a relatively small and relevant fraction of dysregulated mRNA/miRNAs (miR-126-3p and miR-335-5p, in particular). Importantly, myxoma-derived CSCs but not normal myocardium-derived CSCs, seed human myxoma tumours in xenograft’s in immunodeficient NOD/SCID mice. Conclusion Myxoma-derived c-kitpos/CD45neg/CD31neg CSCs fulfill the criteria expected of atrial myxoma-initiating stem cells. The transcriptome of these cells indicates that they belong to or are derived from the same lineage as the atrial multipotent c-kitpos/CD45neg/CD31neg CSCs. Taken together the data presented here suggest that human myxomas could be the first-described CSC-related human heart disease.



Author(s):  
Yanjie Zhu ◽  
Dan Yang ◽  
Lixian Zou ◽  
Yucheng Chen ◽  
Xin Liu ◽  
...  

Abstract Background Myocardial edema in acute myocardial infarction (AMI) is commonly imaged using dark-blood short tau inversion recovery turbo spin echo (STIR-TSE) cardiovascular magnetic resonance (CMR). The technique is sensitive to cardiac motion and coil sensitivity variation, leading to myocardial signal nonuniformity and impeding reliable depiction of edematous tissues. T2-prepared balanced steady state free precession (T2p-bSSFP) imaging has been proposed, but its contrast is low, and averaging is commonly needed. T2 mapping is useful but requires a long scan time and breathholding. We propose here a single-shot magnetization prepared sequence that increases the contrast between edema and normal myocardium and apply it to myocardial edema imaging. Methods A magnetization preparation module (T2STIR) is designed to exploit the simultaneous elevation of T1 and T2 in edema to improve the depiction of edematous myocardium. The module tips magnetization down to the –z axis after T2 preparation. Transverse magnetization is sampled at the fat null point using bSSFP readout and allows for single-shot myocardial edema imaging. The sequence (T2STIR-bSSFP) was studied for its contrast behavior using simulation and phantoms. It was then evaluated on 7 healthy subjects and 7 AMI patients by comparing it to T2p-bSSFP and T2 mapping using the contrast-to-noise ratio (CNR) and the contrast ratio as performance indices. Results In simulation and phantom studies, T2STIR-bSSFP had improved contrast between edema and normal myocardium compared with the other two edema imaging techniques. In patients, the CNR of T2STIR-bSSFP was higher than T2p-bSSFP (5.9 ± 2.6 vs. 2.8 ± 2.0, P < 0.05) but had no significant difference compared with that of the T2 map (T2 map: 6.6 ± 3.3 vs. 5.9 ± 2.6, P = 0.62). The contrast ratio of T2STIR-bSSFP (2.4 ± 0.8) was higher than that of the T2 map (1.3 ± 0.1, P < 0.01) and T2p-bSSFP (1.4 ± 0.5, P < 0.05). Conclusion T2STIR-bSSFP has improved contrast between edematous and normal myocardium compared with commonly used bSSFP-based edema imaging techniques. T2STIR-bSSFP also differentiates between fat that was robustly suppressed and fluids around the heart. The technique is useful for single-shot edema imaging in AMI patients.



2019 ◽  
Vol 21 (6) ◽  
pp. 653-663 ◽  
Author(s):  
In-Chang Hwang ◽  
Hyung-Kwan Kim ◽  
Jun-Bean Park ◽  
Eun-Ah Park ◽  
Whal Lee ◽  
...  

Abstract Aims Native T1 times from T1 mapping cardiac magnetic resonance (CMR) are associated with myocardial fibrosis in aortic stenosis (AS). We investigated whether changing patterns in native T1 predict clinical outcomes after aortic valve replacement (AVR) in severe AS patients. Methods and results Forty-three patients with severe AS (65.9 ± 8.1 years; 24 men) who underwent T1 mapping CMR at baseline and 1 year after AVR were prospectively enrolled. Upper limit of native T1 from healthy volunteers was used to define normal myocardium and diffuse fibrosis (native T1 &lt; 1208.4 and ≥1208.4 ms, respectively). Participants were categorized into Group 1 (pre- and post-AVR normal myocardium; n = 11), Group 2 (pre-AVR diffuse fibrosis and post-AVR normal myocardium; n = 18), and Group 3 (post-AVR diffuse fibrosis; n = 14). Native T1 significantly decreased 1 year after AVR (pre-AVR, 1233.8 ± 49.7 ms; post-AVR, 1189.1 ± 58.4 ms; P &lt; 0.001), which was associated with left ventricular (LV) mass regression (△native T1 vs. △LV mass index, r = 0.454, P = 0.010) and systolic function improvement (△native T1 vs. △LV ejection fraction, r = −0.379, P = 0.012). Group 2 showed greater functional improvements, whereas these benefits were blunted in Group 3. Group 3 had significantly worse outcomes than Group 1 [hazard ratio (HR), 9.479, 95% confidence interval (CI) 1.176–76.409; P = 0.035] and Group 2 (HR 3.551, 95% CI 1.178–10.704; P = 0.024). Conclusion AVR-induced changes in native T1 values are associated with LV systolic functional changes as well as prognosis in severe AS. Post-AVR T1 mapping CMR can be used as an imaging biomarker.



2019 ◽  
Vol 112 ◽  
pp. 136-143 ◽  
Author(s):  
Marly van Assen ◽  
Francesco Lavra ◽  
U. Joseph Schoepf ◽  
Brian E. Jacobs ◽  
Baxter T. Williams ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document