scholarly journals Comparison of the effects of and usability of active and active-assistive rehabilitation robots for the upper extremity function among patients with stroke: a single-blinded randomized controlled pilot study

2020 ◽  
Author(s):  
Jin Ho Park ◽  
Gyulee Park ◽  
Ha Yeon Kim ◽  
Ji-Yeong Lee ◽  
Yeajin Ham ◽  
...  

Abstract Background Robotic rehabilitation of stroke survivors with upper extremity dysfunction yields different outcomes depending on the robot type. Considering that excessive dependence on assistive force provided by robots may interfere with the patient’s active learning and participation, we hypothesized that the use of an active-assistive robot does not lead to a more meaningful difference with respect to upper extremity rehabilitation than the use of an active robot. Accordingly, we aimed to evaluate the differences in the clinical and kinematic outcomes between active and active-assistive robotic rehabilitation among stroke survivors. Methods In this single-blinded randomized controlled trial, we assigned 20 stroke survivors with upper extremity dysfunction (Medical Research Council scale score, 3 or 4) to the active (ACT) and active-assistive (ACAS) robotic rehabilitation groups in a 1:1 ratio and administered 20 sessions of 30-minute robotic intervention (5 days/week, 4 weeks). The primary (Wolf Motor Function Test [WMFT]-score and -time: measures activity), and secondary (Fugl-Meyer Assessment [FMA] and Stroke Impact Scale [SIS] scores: measure impairment and participation, respectively; kinematic outcomes) outcome measures were determined at baseline, after 2 and 4 weeks of the intervention, and 4 weeks after the end of the intervention. Furthermore, we evaluated the usability of the robotic devices by conducting interviews with the patients, therapists, and physiatrists. Results In both the groups, the WMFT-score and -time improved over the course of the intervention. Time had a significant effect on the WMFT-score and -time, FMA-UE, FMA-prox, and SIS-strength; group × time interaction had a significant effect on SIS-function and SIS-social participation (all, p < 0.05). The ACT group showed better improvement in participation and smoothness than the ACAS group. In contrast, the ACAS group exhibited better improvement in mean speed. Conclusions There were no differences between the two groups regarding the impairment and activity domains. However, the ACT robots were more beneficial than ACAS robots regarding participation and smoothness. Considering the high cost and complexity of ACAS robots, ACT robots may be more suitable for robotic rehabilitation in stroke survivors who can perform voluntary movement. Trial registration: The trial was registered retrospectively on 14 March 2018 at ClinicalTrials.gov (NCT03465267).

2020 ◽  
Author(s):  
Jin Ho Park ◽  
Gyulee Park ◽  
Ha Yeon Kim ◽  
Ji-Yeong Lee ◽  
Yeajin Ham ◽  
...  

Abstract Background: Robotic rehabilitation of stroke survivors with upper extremity dysfunction yields different outcomes depending on the robot type. Considering that excessive dependence on assistive force provided by robots may interfere with the patient’s active learning and participation, we hypothesized that the use of an active-assistive robot does not lead to a more meaningful difference with respect to upper extremity rehabilitation than the use of an active robot. Accordingly, we aimed to evaluate the differences in the clinical and kinematic outcomes between active and active-assistive robotic rehabilitation among stroke survivors.Methods: In this single-blinded randomized controlled trial, we assigned 20 stroke survivors with upper extremity dysfunction (Medical Research Council scale score, 3 or 4) to the active (ACT) and active-assistive (ACAS) robotic rehabilitation groups in a 1:1 ratio and administered 20 sessions of 30-minute robotic intervention (5 days/week, 4 weeks). The primary (Wolf Motor Function Test [WMFT]-score and -time: measures activity), and secondary (Fugl-Meyer Assessment [FMA] and Stroke Impact Scale [SIS] scores: measure impairment and participation, respectively; kinematic outcomes) outcome measures were determined at baseline, after 2 and 4 weeks of the intervention, and 4 weeks after the end of the intervention. Furthermore, we evaluated the usability of the robotic devices by conducting interviews with the patients, therapists, and physiatrists. Results: In both the groups, the WMFT-score and -time improved over the course of the intervention. Time had a significant effect on the WMFT-score and -time, FMA-UE, FMA-prox, and SIS-strength; group × time interaction had a significant effect on SIS-function and SIS-social participation (all, p <0.05). The ACT group showed better improvement in participation and smoothness than the ACAS group. In contrast, the ACAS group exhibited better improvement in mean speed. Conclusions: There were no differences between the two groups regarding the impairment and activity domains. However, the ACT robots were more beneficial than ACAS robots regarding participation and smoothness. Considering the high cost and complexity of ACAS robots, ACT robots may be more suitable for robotic rehabilitation in stroke survivors who can perform voluntary movement.Trial registration: The trial was registered retrospectively on 14 March 2018 at ClinicalTrials.gov (NCT03465267).


2020 ◽  
Author(s):  
Jin Ho Park ◽  
Gyulee Park ◽  
Ha Yeon Kim ◽  
Ji-Yeong Lee ◽  
Yeajin Ham ◽  
...  

Abstract Background : Robotic rehabilitation of stroke survivors with upper extremity dysfunction may yield different outcomes depending on the robot type. Considering that excessive dependence on assistive force by robotic actuators may interfere with the patient’s active learning and participation, we hypothesised that the use of an active-assistive robot with robotic actuators does not lead to a more meaningful difference with respect to upper extremity rehabilitation than the use of a passive robot without robotic actuators. Accordingly, we aimed to evaluate the differences in the clinical and kinematic outcomes between active-assistive and passive robotic rehabilitation among stroke survivors. Methods: In this single-blinded randomised controlled pilot trial, we assigned 20 stroke survivors with upper extremity dysfunction (Medical Research Council scale score, 3 or 4) to the active-assistive robotic intervention (ACT) and passive robotic intervention (PSV) groups in a 1:1 ratio and administered 20 sessions of 30-minute robotic intervention (5 days/week, 4 weeks). The primary (Wolf Motor Function Test [WMFT]-score and -time: measures activity), and secondary (Fugl-Meyer Assessment [FMA] and Stroke Impact Scale [SIS] scores: measure impairment and participation, respectively; kinematic outcomes) outcome measures were determined at baseline, after 2 and 4 weeks of the intervention, and 4 weeks after the end of the intervention. Furthermore, we evaluated the usability of the robots through interviews with patients, therapists, and physiatrists. Results: In both the groups, the WMFT-score and -time improved over the course of the intervention. Time had a significant effect on the WMFT-score and -time, FMA-UE, FMA-prox, and SIS-strength; group × time interaction had a significant effect on SIS-function and SIS-social participation (all, p <0.05). The PSV group showed better improvement in participation and smoothness than the ACT group. In contrast, the ACT group exhibited better improvement in mean speed. Conclusions: There were no differences between the two groups regarding the impairment and activity domains. However, the PSV robots were more beneficial than ACT robots regarding participation and smoothness. Considering the high cost and complexity of ACT robots, PSV robots might be more suitable for rehabilitation in stroke survivors capable of voluntary movement. Trial registration: The trial was registered retrospectively on 14 March 2018 at ClinicalTrials.gov (NCT03465267).


Author(s):  
Jin Ho Park ◽  
Gyulee Park ◽  
Ha Yeon Kim ◽  
Ji-Yeong Lee ◽  
Yeajin Ham ◽  
...  

Abstract Background Robotic rehabilitation of stroke survivors with upper extremity dysfunction may yield different outcomes depending on the robot type. Considering that excessive dependence on assistive force by robotic actuators may interfere with the patient’s active learning and participation, we hypothesised that the use of an active-assistive robot with robotic actuators does not lead to a more meaningful difference with respect to upper extremity rehabilitation than the use of a passive robot without robotic actuators. Accordingly, we aimed to evaluate the differences in the clinical and kinematic outcomes between active-assistive and passive robotic rehabilitation among stroke survivors. Methods In this single-blinded randomised controlled pilot trial, we assigned 20 stroke survivors with upper extremity dysfunction (Medical Research Council scale score, 3 or 4) to the active-assistive robotic intervention (ACT) and passive robotic intervention (PSV) groups in a 1:1 ratio and administered 20 sessions of 30-min robotic intervention (5 days/week, 4 weeks). The primary (Wolf Motor Function Test [WMFT]-score and -time: measures activity), and secondary (Fugl-Meyer Assessment [FMA] and Stroke Impact Scale [SIS] scores: measure impairment and participation, respectively; kinematic outcomes) outcome measures were determined at baseline, after 2 and 4 weeks of the intervention, and 4 weeks after the end of the intervention. Furthermore, we evaluated the usability of the robots through interviews with patients, therapists, and physiatrists. Results In both the groups, the WMFT-score and -time improved over the course of the intervention. Time had a significant effect on the WMFT-score and -time, FMA-UE, FMA-prox, and SIS-strength; group × time interaction had a significant effect on SIS-function and SIS-social participation (all, p < 0.05). The PSV group showed better improvement in participation and smoothness than the ACT group. In contrast, the ACT group exhibited better improvement in mean speed. Conclusions There were no differences between the two groups regarding the impairment and activity domains. However, the PSV robots were more beneficial than ACT robots regarding participation and smoothness. Considering the high cost and complexity of ACT robots, PSV robots might be more suitable for rehabilitation in stroke survivors capable of voluntary movement. Trial registration The trial was registered retrospectively on 14 March 2018 at ClinicalTrials.gov (NCT03465267).


2014 ◽  
Vol 28 (11) ◽  
pp. 1107-1114 ◽  
Author(s):  
Chan Wai Yin ◽  
Ng Yee Sien ◽  
Low Ai Ying ◽  
Stephanie Fook-Chong Man Chung ◽  
Dawn Tan May Leng

Sign in / Sign up

Export Citation Format

Share Document