movement trial
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Jin Ho Park ◽  
Gyulee Park ◽  
Ha Yeon Kim ◽  
Ji-Yeong Lee ◽  
Yeajin Ham ◽  
...  

Abstract Background : Robotic rehabilitation of stroke survivors with upper extremity dysfunction may yield different outcomes depending on the robot type. Considering that excessive dependence on assistive force by robotic actuators may interfere with the patient’s active learning and participation, we hypothesised that the use of an active-assistive robot with robotic actuators does not lead to a more meaningful difference with respect to upper extremity rehabilitation than the use of a passive robot without robotic actuators. Accordingly, we aimed to evaluate the differences in the clinical and kinematic outcomes between active-assistive and passive robotic rehabilitation among stroke survivors. Methods: In this single-blinded randomised controlled pilot trial, we assigned 20 stroke survivors with upper extremity dysfunction (Medical Research Council scale score, 3 or 4) to the active-assistive robotic intervention (ACT) and passive robotic intervention (PSV) groups in a 1:1 ratio and administered 20 sessions of 30-minute robotic intervention (5 days/week, 4 weeks). The primary (Wolf Motor Function Test [WMFT]-score and -time: measures activity), and secondary (Fugl-Meyer Assessment [FMA] and Stroke Impact Scale [SIS] scores: measure impairment and participation, respectively; kinematic outcomes) outcome measures were determined at baseline, after 2 and 4 weeks of the intervention, and 4 weeks after the end of the intervention. Furthermore, we evaluated the usability of the robots through interviews with patients, therapists, and physiatrists. Results: In both the groups, the WMFT-score and -time improved over the course of the intervention. Time had a significant effect on the WMFT-score and -time, FMA-UE, FMA-prox, and SIS-strength; group × time interaction had a significant effect on SIS-function and SIS-social participation (all, p <0.05). The PSV group showed better improvement in participation and smoothness than the ACT group. In contrast, the ACT group exhibited better improvement in mean speed. Conclusions: There were no differences between the two groups regarding the impairment and activity domains. However, the PSV robots were more beneficial than ACT robots regarding participation and smoothness. Considering the high cost and complexity of ACT robots, PSV robots might be more suitable for rehabilitation in stroke survivors capable of voluntary movement. Trial registration: The trial was registered retrospectively on 14 March 2018 at ClinicalTrials.gov (NCT03465267).


2020 ◽  
Author(s):  
Jin Ho Park ◽  
Gyulee Park ◽  
Ha Yeon Kim ◽  
Ji-Yeong Lee ◽  
Yeajin Ham ◽  
...  

Abstract Background Robotic rehabilitation of stroke survivors with upper extremity dysfunction yields different outcomes depending on the robot type. Considering that excessive dependence on assistive force provided by robots may interfere with the patient’s active learning and participation, we hypothesized that the use of an active-assistive robot does not lead to a more meaningful difference with respect to upper extremity rehabilitation than the use of an active robot. Accordingly, we aimed to evaluate the differences in the clinical and kinematic outcomes between active and active-assistive robotic rehabilitation among stroke survivors. Methods In this single-blinded randomized controlled trial, we assigned 20 stroke survivors with upper extremity dysfunction (Medical Research Council scale score, 3 or 4) to the active (ACT) and active-assistive (ACAS) robotic rehabilitation groups in a 1:1 ratio and administered 20 sessions of 30-minute robotic intervention (5 days/week, 4 weeks). The primary (Wolf Motor Function Test [WMFT]-score and -time: measures activity), and secondary (Fugl-Meyer Assessment [FMA] and Stroke Impact Scale [SIS] scores: measure impairment and participation, respectively; kinematic outcomes) outcome measures were determined at baseline, after 2 and 4 weeks of the intervention, and 4 weeks after the end of the intervention. Furthermore, we evaluated the usability of the robotic devices by conducting interviews with the patients, therapists, and physiatrists. Results In both the groups, the WMFT-score and -time improved over the course of the intervention. Time had a significant effect on the WMFT-score and -time, FMA-UE, FMA-prox, and SIS-strength; group × time interaction had a significant effect on SIS-function and SIS-social participation (all, p < 0.05). The ACT group showed better improvement in participation and smoothness than the ACAS group. In contrast, the ACAS group exhibited better improvement in mean speed. Conclusions There were no differences between the two groups regarding the impairment and activity domains. However, the ACT robots were more beneficial than ACAS robots regarding participation and smoothness. Considering the high cost and complexity of ACAS robots, ACT robots may be more suitable for robotic rehabilitation in stroke survivors who can perform voluntary movement. Trial registration: The trial was registered retrospectively on 14 March 2018 at ClinicalTrials.gov (NCT03465267).


Author(s):  
Manne Holm ◽  
Per Tornvall ◽  
Loghman Henareh ◽  
Ulf Jensen ◽  
Nanna Golster ◽  
...  
Keyword(s):  

2012 ◽  
Vol 9 (1) ◽  
pp. 99-115 ◽  
Author(s):  
Sivakumar Balasubramanian ◽  
Jiping He

The paper describes the implementation and testing of two adaptive controllers developed for a wearable, underactuated upper extremity therapy robot – RUPERT (Robotic Upper Extremity Repetitive Trainer). The controllers developed in this study were used to implement two adaptive robotic therapy modes – the adaptive co-operative mode and the adaptive active-assist mode – that are based on two different approaches for providing robotic assistance for task practice. The adaptive active-assist mode completes therapy tasks when a subject is unable to do so voluntarily. This robotic therapy mode is a novel implementation of the idea of an active-assist therapy mode; it utilizes the measure of a subject’s motor ability, along with their real-time movement kinematics to initiate robotic assistance at the appropriate time during a movement trial. The adaptive co-operative mode, on the other hand, is based on the idea of enabling task completion instead of completing the task for the subject. Both these therapy modes were designed to adapt to a stroke subject's motor ability, and thus encourage voluntary participation from the stroke subject. The two controllers were tested on three stroke subjects practicing robot-assisted reaching movements. The results from this testing demonstrate that an underactuated wearable exoskeleton, such as RUPERT, can be used for administering robot-assisted therapy, in a manner that encourages voluntary participation from the subject undergoing therapy.


2007 ◽  
Vol 98 (1) ◽  
pp. 317-326 ◽  
Author(s):  
Jordan A. Taylor ◽  
Kurt A. Thoroughman

When humans experience externally induced errors in a movement, the motor system's feedback control compensates for those errors within the movement. The motor system's predictive control then uses information about those errors to inform future movements. The role of attention in these two distinct motor processes is unclear. Previous experiments have revealed a role for attention in motor learning over the course of many movements; however, these experimental paradigms do not determine how attention influences within-movement feedback control versus across-movement adaptation. Here we develop a dual-task paradigm, consisting of movement and audio tasks, which can differentiate and expose attention's role in these two processes of motor control. Over the course of several days, subjects performed horizontal reaching movements, with and without the audio task; movements were occasionally subjected to transient force perturbations. On movements with a force perturbation, subjects compensated for the force-induced movement errors, and on movements immediately after the force perturbation subjects exhibited adaptation. On every movement trial, subjects performed a two-tone frequency-discrimination task. The temporal specificity of the frequency-discrimination task allowed us to divide attention within and across movements. We find that divided attention did not impair the within-movement feedback control of the arm, but did reduce subsequent movement adaptation. We suggest that the secondary task interfered with the encoding and transformation of errors into changes in predictive control.


Sign in / Sign up

Export Citation Format

Share Document