scholarly journals Mesenchymal stem cells modified by FGF21 and GLP1 ameliorate lipid metabolism while reducing blood glucose in type 2 diabetic mice

2020 ◽  
Author(s):  
Binghua Xue ◽  
Xiuxiao Xiao ◽  
Tingting Yu ◽  
Xinhua Xiao ◽  
Jie Xie ◽  
...  

Abstract Objective: The purpose of this study was to investigate the therapeutic effects of genetically modified mesenchymal stem cells (MSCs) in the treatment of type 2 diabetes mellitus (T2DM) in order to identify a new method for treating diabetes that differs from traditional medicine and to provide a new means by which to fundamentally improve or treat diabetes. Methods: MSCs derived from adipose tissue were modified to overexpress FGF21 and GLP1, which was achieved through lentiviral particle transduction. The cells were transplanted into BKS.Cg-Dock7m+/+Leprdb/Nju mice (T2DM mouse model). Injections of physiological saline (0.1 mL) and liraglutide (0.5 mg/kg) were used as negative and positive controls, respectively. ELISA or Western blotting were used for protein analysis, and quantitative real-time PCR was used for gene expression analysis. Results: Genetic modification had no effects on the morphology, differentiation ability, or immunophenotype of MSCs. Moreover, MSC-FGF21+GLP1 cells exhibited significantly increased secretion of FGF21 and GLP1. In the T2DM mouse model, the transplantation of MSC-FGF21+GLP1 cells ameliorated the changes in blood glucose and weight, promoted the secretion of insulin, enhanced the recovery of liver structures, and improved the profiles of lipids. Moreover, FGF21 and GLP1 exerted synergistic effects in the regulation of glucolipid metabolism by controlling the expression of insulin, srebp1 and srebp2. Conclusion: Stem cell treatment based on MSCs modified to overexpress the FGF21 and GLP1 genes is an effective approach for the treatment of T2DM. Key words: Type 2 diabetes mellitus; Mesenchymal stem cell; FGF21; GLP1

2017 ◽  
Vol 4 (S) ◽  
pp. 88
Author(s):  
Phuong Thi-Bich Le ◽  
Phuc Van Pham ◽  
Ngoc Bich Vu ◽  
Loan Thi-Tung Dang ◽  
Ngoc Kim Phan

Introduction: Type 2 diabetes mellitus (T2D) is the most common form of diabetes mellitus, accounting for 90% of diabetes mellitus in patients. At the present time, although T2D can be treated by various drugs and therapies using insulin replacement, reports have shown that complications including microvascular, macrovascular complications and therapy resistance can occur in patients on long term treatment. Stem cell therapy is regarded as a promising therapy for diabetes mellitus, including T2D. The aim of this study was to evaluate the safety and therapeutic effect of expanded autologous adipose derived stem cell (ADSC) transplantation for T2D treatment; the pilot study included 3 patients who were followed for 3 months. Methods: The ADSCs were isolated from stromal vascular fractions, harvested from the belly of the patient,and expanded for 21 days per previously published studies. Before transplantation, ADSCs were evaluated for endotoxin, mycoplasma contamination, and karyotype. All patients were transfused with ADSCs at 1-2x106 cells/kg of body weight.Patients were evaluated for criteria related to transplantation safety and therapeutic effects; these included fever, blood glucose level before transplantation of ADSCs, and blood glucose level after transplantation (at 1, 2 and 3 months). Results: The results showed that all samples of ADSCs exhibited the MSC phenotype with stable karyotype (2n=46), there was no contamination of mycoplasma, and endotoxin levels were low (<0.25 EU/mL). No adverse effects were detected after 3 months of transplantation. Decreases of blood glucose levels were recorded in all patients. Conclusion: The findings from this initial study show that expanded autologous ADSCs may be a promising treatment for T2D.


2016 ◽  
Vol 3 (12) ◽  
pp. 1034 ◽  
Author(s):  
Phuong Thi-Bich Le ◽  
Phuc Van Pham ◽  
Ngoc Bich Vu ◽  
Loan Thi-Tung Dang ◽  
Ngoc Kim Phan

Introduction: Type 2 diabetes mellitus (T2D) is the most common form of diabetes mellitus, accounting for 90% of diabetes mellitus in patients. At the present time, althoughT2D can be treated by various drugs and therapies using insulin replacement, reports have shown that complications including microvascular, macrovascular complications and therapy resistance can occur in patients on long term treatment. Stem cell therapy is regarded as a promising therapy for diabetes mellitus, including T2D. The aim of this study was to evaluate the safety and therapeutic effect of expanded autologous adipose derived stem cell (ADSC) transplantation for T2D treatment; the pilot study included 3 patients who were followed for 3 months. Methods: The ADSCs were isolated from stromal vascular fractions, harvested from the belly of the patient,and expanded for 21 days per previously published studies. Before transplantation, ADSCs were evaluated for endotoxin, mycoplasma contamination, and karyotype.All patients were transfused with ADSCs at 1-2x106 cells/kg of body weight.Patients were evaluated for criteria related to transplantation safety and therapeutic effects; these included fever, blood glucose level before transplantation of ADSCs, and blood glucose level after transplantation (at 1, 2 and 3 months).Results: The results showed that all samples of ADSCs exhibited the MSC phenotype with stable karyotype (2n=46), there was no contamination of mycoplasma, and endotoxin levels were low (0.25 EU/mL). No adverse effects were detected after 3 months of transplantation. Decreases of blood glucose levels were recorded in all patients. Conclusion: The findings from this initial study show that expanded autologous ADSCs may be a promising treatment for T2D.


Author(s):  
Nourhan Abu-Shahba ◽  
Marwa Mahmoud ◽  
Alaa Mohammed El-Erian ◽  
Mohamed Ibrahim Husseiny ◽  
Ghada Nour-Eldeen ◽  
...  

2020 ◽  
Vol 29 ◽  
pp. 096368972090462
Author(s):  
Gongchi Li ◽  
Han Peng ◽  
Shen Qian ◽  
Xinhua Zou ◽  
Ye Du ◽  
...  

Numerous studies have proposed the transplantation of mesenchymal stem cells (MSCs) in the treatment of typical type 2 diabetes mellitus (T2DM). We aimed to find a new strategy with MSC therapy at an early stage of T2DM to efficiently prevent the progressive deterioration of organic dysfunction. Using the high-fat-fed hyperinsulinemia rat model, we found that before the onset of typical T2DM, bone marrow-derived MSCs (BM-MSCs) significantly attenuated rising insulin with decline in glucose as well as restored lipometabolic disorder and liver dysfunction. BM-MSCs also favored the histological structure recovery and proliferative capacity of pancreatic islet cells. More importantly, BM-MSC administration successfully reversed the abnormal expression of insulin resistance-related proteins including GLUT4, phosphorylated insulin receptor substrate 1, and protein kinase Akt and proinflammatory cytokines IL-6 and TNFα in liver. These findings suggested that MSCs transplantation during hyperinsulinemia could prevent most potential risks of T2DM for patients.


Sign in / Sign up

Export Citation Format

Share Document