scholarly journals Designing a One-Dimensional Photonic Crystal via Thue-Morse Sequence Containing Two Types of Double Negative Metamaterial

Author(s):  
Ali Baseri ◽  
Alireza Keshavarz

Abstract This study investigates the propagating of electromagnetic waves through a one-dimensional quasi-photonic crystal with the transfer matrix method. Our proposed structure consists of two types of double negative metamaterials, organized according to the Thue-Morse sequence law. The results show that changing the structure via quasi-periodic arrangements makes the outcome more varied than applying the absolute periodic arrangement. Given that, our desirable results of interest are more conveniently achieved. The structure completely stops-both s and p polarization at the lower frequencies, for all incidence angles. It also partially stops s and p polarization, at higher frequencies. Moreover, the achieved transmittance spectrum contains several omnidirectional band-gaps, which remain invariant with changes in the incidence angle. The oscillation of the transmittance values also becomes more intense at higher orders of the period number. This study could pave the way for optimizing of photonic crystal circuits, splitters, switches, etc.

2010 ◽  
Vol 24 (11) ◽  
pp. 1463-1470 ◽  
Author(s):  
YANTING YANG ◽  
YANMING YANG ◽  
YU JUN ZHAO ◽  
JING CHENG

The water wave transmission properties and the frequency spectra of one-dimensional combination bottom of water and mercury with different filling fractions are studied by the transfer matrix method. For the periodic bottoms (PBs), the effect of the steps' numbers and the width on the band gaps are discussed. Each of whole band gaps is the juxtaposition of the gaps of three kinds of PBs, without covering. The numerical results show that the band gaps could be enlarged effectively by choosing the steps' width properly.


RSC Advances ◽  
2021 ◽  
Vol 11 (43) ◽  
pp. 26655-26665
Author(s):  
Sakshi Gandhi ◽  
Suneet Kumar Awasthi ◽  
Arafa H. Aly

A new biophotonic sensor composed of a porous silicon (PSi)-based one-dimensional (1D) defective annular photonic crystal (APC) was designed and theoretically investigated using a modified transfer matrix method (TMM) in terms of cylindrical coordinates.


2016 ◽  
Vol 30 (25) ◽  
pp. 1650184 ◽  
Author(s):  
Moumita Dey ◽  
Santanu K. Maiti

In the present work, we propose that a one-dimensional quantum heterostructure composed of magnetic and non-magnetic (NM) atomic sites can be utilized as a spin filter for a wide range of applied bias voltage. A simple tight-binding framework is given to describe the conducting junction where the heterostructure is coupled to two semi-infinite one-dimensional NM electrodes. Based on transfer matrix method, all the calculations are performed numerically which describe two-terminal spin-dependent transmission probability along with junction current through the wire. Our detailed analysis may provide fundamental aspects of selective spin transport phenomena in one-dimensional heterostructures at nanoscale level.


Sign in / Sign up

Export Citation Format

Share Document