Improving Performance of Laser and Shaped Tube Electrochemical Machining by Using Retracted Hybrid Tubular Tool Electrode

Author(s):  
yong yang ◽  
yufeng wang ◽  
Yujie Gui ◽  
Fuhui Shao ◽  
Yulei Li ◽  
...  

Abstract The coaxial laser has been introduced to shaped tube electrochemical machining (STEM), referred to as Laser-STEM, to enhance the materials removal rate and precision. To address the issue of central residual formation during the Laser-STEM process, which limited the machining stability and feeding rate, the retracted hybrid tubular electrode was applied. The formation mechanisms and effects of the W-shaped central residual were analyzed. Simulation and experiments were conducted to study the impact of the retracted length of the tubular electrode. Simulation results showed that a retracted length of 1-1.5 mm of the inner low-refractive layer could improve the electric current density distribution homogeneity to remove the W-shaped central residual in the machining area. The electric current density distribution homogeneity in the machining zone has been decreased by 38% by utilizing the hybrid tubular electrode with a retracted length of 2.0 mm. With a proper retracted length, the laser coupling efficiency exceeded 74.5%. Hence, the retracted hybrid tubular electrode could act as both the tool electrode and optical waveguide in the Laser-STEM process. Experimental results proved that the machining efficiency and precision of Laser-STEM could be enhanced by utilizing the retracted hybrid tubular electrode. With the retracted length deg rising from 0 mm to 1.5 mm, the maximum feeding speed increased by 373%, and the machining precision was improved by 42.2%. The maximum feeding rate of 4.1 mm/min has been achieved using the retracted hybrid tubular electrode in the Laser-STEM process, which has been improved by 105%, compared with the available maximum feeding rate of the tubular electrode in the STEM process. Finally, the small holes with a diameter of 1.4 mm and an aspect ratio of 15 have been processed by Laser-STEM with the retracted hybrid tubular electrode.

Solar Physics ◽  
2014 ◽  
Vol 289 (11) ◽  
pp. 4031-4045 ◽  
Author(s):  
Tilaye Tadesse ◽  
Alexei A. Pevtsov ◽  
T. Wiegelmann ◽  
P. J. MacNeice ◽  
S. Gosain

2010 ◽  
Vol 80 (9) ◽  
pp. 1886-1902 ◽  
Author(s):  
Andrés Ramírez Aguilera ◽  
Luis Enrique Bergues Cabrales ◽  
Héctor Manuel Camué Ciria ◽  
Yudelmis Soler Pérez ◽  
Fidel Gilart González ◽  
...  

2006 ◽  
Vol 24 (6) ◽  
pp. 1479-1481 ◽  
Author(s):  
P. L. Israelevich ◽  
A. I. Ershkovich

Abstract. Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer) and double-peaked (bifurcated current sheet). Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.


Sign in / Sign up

Export Citation Format

Share Document