scholarly journals A Multi-scale Residual Convolutional Neural Network for Sleep Staging Based on Single Channel Electroencephalography Signal

Author(s):  
QINGHUA ZHONG ◽  
Haibo Lei ◽  
Qianru Chen ◽  
Guofu Zhou

Abstract Sleep disorder is a serious public health problem. Non hospital sleep monitoring system for monitoring sleep quality can effectively support the screening of sleep disorder related diseases. A new algorithm of multi-scale residual convolutional neural network (MS-RESCNN) was proposed to discover the feature of electroencephalography (EEG) signals detected with wearable system and staging the sleep stage. EEG signals were analyzed by this algorithm every 30 seconds, and then sleep staging results of wake-up (W), rapid eye movement sleep (REM) and non-rapid eye movement sleep (NREM) were outputed. NREM can also be subdivided into N1, N2 and N3 stages. 5-fold cross validation and independent subject cross validation were performed on the dataset with Kappa cofficients 0.7360 and 0.7001, respectively. The accuracy rates of those methods were 92.06% and 91.13%, respectively. Compared with the other methods, our proposed method can obtain the information of sleep stages from single channel EEG signals without special feature extraction. It has a good performance and can provide support for clinical application based on automatic sleep staging.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qinghua Zhong ◽  
Haibo Lei ◽  
Qianru Chen ◽  
Guofu Zhou

Sleep disorder is a serious public health problem. Unobtrusive home sleep quality monitoring system can better open the way of sleep disorder-related diseases screening and health monitoring. In this work, a sleep stage classification algorithm based on multiscale residual convolutional neural network (MRCNN) was proposed to detect the characteristics of electroencephalogram (EEG) signals detected by wearable systems and classify sleep stages. EEG signals were analyzed in each epoch of every 30 seconds, and then 5-class sleep stage classification, wake (W), rapid eye movement sleep (REM), and nonrapid eye movement sleep (NREM) including N1, N2, and N3 stages was outputted. Good results (accuracy rate of 92.06% and 91.13%, Cohen’s kappa of 0.7360 and 0.7001) were achieved with 5-fold cross-validation and independent subject cross-validation, respectively, which performed on European Data Format (EDF) dataset containing 197 whole-night polysomnographic sleep recordings. Compared with several representative deep learning methods, this method can easily obtain sleep stage information from single-channel EEG signals without specialized feature extraction, which is closer to clinical application. Experiments based on CinC2018 dataset also proved that the method has a good performance on large dataset and can provide support for sleep disorder-related diseases screening and health surveillance based on automatic sleep staging.


Author(s):  
Sara Houshmand ◽  
Reza Kazemi ◽  
Hamed Salmanzadeh

A significant number of fatal accidents are caused by drowsy drivers worldwide. Driver drowsiness detection based on electroencephalography (EEG) signals has high accuracy and is known as a reference method for evaluating drowsiness. Among brain waves, EEG alpha spindle activity is a silent feature of decreasing alertness levels. In this paper, based on the detection of EEG alpha spindles, a novel driver drowsiness detection method is presented. The EEG spindles were detected using Continuous Wavelet Transform (CWT) analysis and the Morlet function. To do so, the signal is divided into 30-s epochs, and the observer rating of drowsiness determines the drowsiness level in each epoch. Tests were conducted on 17 healthy males in a driving simulator with a monotonous driving scenario. The Convolutional Neural Network (CNN) is used for classifying EEG signals and automatically learns features of the early drowsy state. The subject-independent classification results for single-channel P4 show 94% accuracy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiahao Fan ◽  
Chenglu Sun ◽  
Meng Long ◽  
Chen Chen ◽  
Wei Chen

In recent years, automatic sleep staging methods have achieved competitive performance using electroencephalography (EEG) signals. However, the acquisition of EEG signals is cumbersome and inconvenient. Therefore, we propose a novel sleep staging approach using electrooculogram (EOG) signals, which are more convenient to acquire than the EEG. A two-scale convolutional neural network first extracts epoch-wise temporary-equivalent features from raw EOG signals. A recurrent neural network then captures the long-term sequential information. The proposed method was validated on 101 full-night sleep data from two open-access databases, the montreal archive of sleep studies and Sleep-EDF, achieving an overall accuracy of 81.2 and 76.3%, respectively. The results are comparable to those models trained with EEG signals. In addition, comparisons with six state-of-the-art methods further demonstrate the effectiveness of the proposed approach. Overall, this study provides a new avenue for sleep monitoring.


2021 ◽  
Vol 63 ◽  
pp. 102203
Author(s):  
Fan Li ◽  
Rui Yan ◽  
Reza Mahini ◽  
Lai Wei ◽  
Zhiqiang Wang ◽  
...  

Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Sign in / Sign up

Export Citation Format

Share Document