scholarly journals Existence of Hidden Pulmonary Arteries in Tetralogy of Fallot and pulmonary artery hypertension in patients Operated with one Pulmonary Artery

2020 ◽  
Author(s):  
Mohammadreza Edraki ◽  
Bahram Ghasemzadeh ◽  
Kambiz Keshavarz ◽  
Ahmadali Amirghofran ◽  
Hamid Mohammadi ◽  
...  

Abstract Introduction: The absence of a pulmonary artery is a rare congenital anomaly that occurs isolated or with other congenital cardiac disorders, particularly tetralogy of Fallot (TOF); meanwhile, a hidden pulmonary artery might exist and originate from a closed ductus arteriosus (DA), which can be stented to reach the artery.Material and methods: This prospective study describes cardiac catheterization of nine TOF patients diagnosed with the absence of the left pulmonary artery before the operation. The patients were stratified into three groups: group one, whose closed DA was found and connected to the hidden pulmonary artery with a stent; group two, whose hidden pulmonary arteries were found via the pulmonary vein angiography; and group three, for whom we could not find the remnant of the DA, or our attempt to stent the DA to the hidden pulmonary artery was not successful.We also evaluated outcomes of six other surgically-corrected TOF patients who were operated with the absent left pulmonary artery.Results: The first group included the patients aged 1, 24, and 30 months, whose CT angiography 6-9 months after stenting showed acceptable left pulmonary artery diameter for surgical correction, and the pulmonary vein angiography of the second group showed a hidden left pulmonary artery with a suitable diameter for surgical correction.However, we were unable to find or stent the DA of group three patients, aged 12, 38, 60, and 63 months. Earlier Angiography might have increased the chance of access to the hidden vessel. Apart from these three groups, follow-ups of six other patients previously corrected with only the right pulmonary artery revealed pulmonary artery hypertension in all patients.Conclusion: The concealed pulmonary artery might be found, and stenting of the closed DA to it might be performed to improve the diameter of the diminutive pulmonary artery. This procedure may allow TOF total surgical correction with two pulmonary arteries. Besides, pulmonary vein angiography can reveal the hidden pulmonary artery.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohammadreza Edraki ◽  
Bahram Ghasemzadeh ◽  
Kambiz Keshavarz ◽  
Ahmadali Amirghofran ◽  
Hamid Mohammadi ◽  
...  

Abstract Introduction The absence of a pulmonary artery is a rare congenital anomaly that occurs isolated or with other congenital cardiac disorders, particularly tetralogy of Fallot (TOF); meanwhile, a hidden pulmonary artery might exist and originate from a closed ductus arteriosus (DA), which can be stented to reach the artery. Material and methods This prospective study describes cardiac catheterization of nine TOF patients diagnosed with the absence of the left pulmonary artery before the operation. The patients were stratified into three groups: group one, whose closed DA was found and connected to the hidden pulmonary artery with a stent; group two, whose hidden pulmonary arteries were found via the pulmonary vein angiography; and group three, for whom we could not find the remnant of the DA, or our attempt to stent the DA to the hidden pulmonary artery was not successful. We also evaluated outcomes of six other surgically-corrected TOF patients who were operated with the absent left pulmonary artery. Results The first group included the patients aged 1, 24, and 30 months, whose CT angiography 6–9 months after stenting showed acceptable left pulmonary artery diameter for surgical correction, and the pulmonary vein angiography of the second group showed a hidden left pulmonary artery with a suitable diameter for surgical correction. However, we were unable to find or stent the DA of group three patients, aged 12, 38, 60, and 63 months. Earlier Angiography might have increased the chance of access to the hidden vessel. Apart from these three groups, follow-ups of six other patients previously corrected with only the right pulmonary artery revealed pulmonary artery hypertension in all patients. Conclusion The concealed pulmonary artery might be found, and stenting of the closed DA to it might be performed to improve the diameter of the diminutive pulmonary artery. This procedure may allow TOF total surgical correction with two pulmonary arteries. Besides, pulmonary vein angiography can reveal the hidden pulmonary artery.


2020 ◽  
Author(s):  
Mohammadreza Edraki ◽  
Bahram Ghasemzadeh ◽  
Kambiz Keshavarz ◽  
Ahmadali Amirghofran ◽  
Hamid Mohammadi ◽  
...  

Abstract Introduction:The absence of a pulmonary artery is a rare congenital anomaly that occurs isolated or with other congenital cardiac disorders, particularly tetralogy of Fallot (TOF); meanwhile, a hidden pulmonary artery might exist and originate from a closed ductus arteriosus (DA), which can be stented to reach the artery.Material and methods: This prospective study describes cardiac catheterization of nine TOF patients diagnosed with the absence of the left pulmonary artery before the operation. The patients were stratified into three groups: group one, whose closed DA was found and connected to the hidden pulmonary artery with a stent; group two, whose hidden pulmonary arteries were found via the pulmonary vein angiography; and group three, for whom we could not find the remnant of the DA, or our attempt to stent the DA to the hidden pulmonary artery was not successful.We also evaluated outcomes of six other surgically-corrected TOF patients who were operated with the absent left pulmonary artery.Results: The first group included the patients aged 1, 24, and 30 months, whose CT angiography 6-9 months after stenting showed acceptable left pulmonary artery diameter for surgical correction, and the pulmonary vein angiography of the second group showed a hidden left pulmonary artery with a suitable diameter for surgical correction.However, we were unable to find or stent the DA of group three patients, aged 12, 38, 60, and 63 months. Earlier Angiography might have increased the chance of access to the hidden vessel. Apart from these three groups, follow-ups of six other patients previously corrected with only the right pulmonary artery revealed pulmonary artery hypertension in all patients.Conclusion: The concealed pulmonary artery might be found, and stenting of the closed DA to it might be performed to improve the diameter of the diminutive pulmonary artery. This procedure may allow TOF total surgical correction with two pulmonary arteries. Besides, pulmonary vein angiography can reveal the hidden pulmonary artery.


2021 ◽  
Author(s):  
Mohammadreza Edraki ◽  
Bahram Ghasemzadeh ◽  
Kambiz Keshavarz ◽  
Ahmadali Amirghofran ◽  
Hamid Mohammadi ◽  
...  

Abstract Introduction: The absence of a pulmonary artery is a rare congenital anomaly that occurs isolated or with other congenital cardiac disorders, particularly tetralogy of Fallot (TOF); meanwhile, a hidden pulmonary artery might exist and originate from a closed ductus arteriosus (DA), which can be stented to reach the artery.Material and methods: This prospective study describes cardiac catheterization of nine TOF patients diagnosed with the absence of the left pulmonary artery before the operation. The patients were stratified into three groups: group one, whose closed DA was found and connected to the hidden pulmonary artery with a stent; group two, whose hidden pulmonary arteries were found via the pulmonary vein angiography; and group three, for whom we could not find the remnant of the DA, or our attempt to stent the DA to the hidden pulmonary artery was not successful.We also evaluated outcomes of six other surgically-corrected TOF patients who were operated with the absent left pulmonary artery.Results: The first group included the patients aged 1, 24, and 30 months, whose CT angiography 6-9 months after stenting showed acceptable left pulmonary artery diameter for surgical correction, and the pulmonary vein angiography of the second group showed a hidden left pulmonary artery with a suitable diameter for surgical correction.However, we were unable to find or stent the DA of group three patients, aged 12, 38, 60, and 63 months. Earlier Angiography might have increased the chance of access to the hidden vessel. Apart from these three groups, follow-ups of six other patients previously corrected with only the right pulmonary artery revealed pulmonary artery hypertension in all patients.Conclusion: The concealed pulmonary artery might be found, and stenting of the closed DA to it might be performed to improve the diameter of the diminutive pulmonary artery. This procedure may allow TOF total surgical correction with two pulmonary arteries. Besides, pulmonary vein angiography can reveal the hidden pulmonary artery.


2020 ◽  
Author(s):  
Mohammadreza Edraki ◽  
Bahram Ghasemzadeh ◽  
Kambiz Keshavarz ◽  
Ahmadali Amirghofran ◽  
Hamid Mohammadi ◽  
...  

Abstract Introduction: The absence of a pulmonary artery is a rare congenital anomaly that occurs on its own or with some congenital cardiac disorders, particularly tetralogy of Fallot (TOF), while the hidden pulmonary artery might originate from a closed ductus arteriosus (DA) that can be stented to reach the artery.Material and methods: This prospective study describes cardiac catheterization of our nine TOF patients who had the absence of the left pulmonary artery before the operation. The patients were stratified in three groups: group one, whose closed DA were found and stented successfully to the hidden pulmonary artery; group two, whose hidden pulmonary arteries were found via the pulmonary vein angiography; and group three, for whom we could not find the remnant of the DA, or our attempt to stent the DA to the hidden pulmonary artery was not successful.We also evaluated outcomes of the other surgically-corrected TOF patients who were operated with the absent left pulmonary artery.Results: The first group included patients aged 1, 24, and 30 months, whose CT angiography 6-9 months after stenting showed acceptable left pulmonary artery diameter for surgically correction, while the pulmonary vein angiography of the group two patients showed a hidden left pulmonary artery with a suitable diameter for surgical correction.However, we were unable to find or stent the DA of the group three patients, aged 12, 38, 60, and 63 months. Moreover, evaluation of the other six previously corrected patients who were operated with a right pulmonary artery revealed pulmonary artery hypertension of the entire patients.Conclusion: The concealed pulmonary artery might be found, and stenting of the closed DA to it might be performed to improve the diameter of the diminutive pulmonary artery. This procedure may allow TOF total surgical correction with two pulmonary arteries. Besides, pulmonary vein angiography can reveal the hidden pulmonary artery.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Hyun-Hwa Cha ◽  
Hae Min Kim ◽  
Won Joon Seong

Abstract Background Unilateral pulmonary artery discontinuity is a rare malformation that is associated with other intracardiac abnormalities. Cases accompanied by other cardiac abnormalities are often missed on prenatal echocardiography. The prenatal diagnosis of isolated unilateral pulmonary artery discontinuity can also be delayed. However, undiagnosed this malformation would have an effect on further prognosis. We report our case of a prenatal diagnosis of pulmonary atresia with ventricular septal defect and left pulmonary artery discontinuity. Case presentation A 33-year-old Asian woman visited our institution at 24 weeks of gestation because of suspected fetal congenital heart disease. Fetal echocardiography revealed a small atretic main pulmonary artery giving rise to the right pulmonary artery without bifurcation and the left pulmonary artery arising from the ductus arteriosus originating from the left subclavian artery. The neonate was delivered by cesarean section at 376/7 weeks of gestation. Postnatal echocardiography and multidetector computed tomography showed a right aortic arch, with the small right pulmonary artery originating from the atretic main pulmonary artery and the left pulmonary artery originating from the left subclavian artery. Patency of the ductus arteriosus from the left subclavian artery was maintained with prostaglandin E1. Right ventricular outflow tract reconstruction and pulmonary angioplasty with Gore-Tex graft patch was performed 25th day after birth. Unfortunately, the neonate died because of right heart failure 8 days postoperation. Conclusion There is a possibility that both pulmonary arteries do not arise from the same great artery (main pulmonary artery or common arterial trunk). Therefore, clinicians should check the origin of both pulmonary arteries.


1995 ◽  
Vol 117 (2) ◽  
pp. 237-241
Author(s):  
H. Katayama ◽  
G. W. Henry ◽  
C. L. Lucas ◽  
B. Ha ◽  
J. I. Ferreiro ◽  
...  

We studied the detailed profiles of blood flow in the right and left pulmonary arteries using 20 MHz pulsed Doppler ultrasound equipment in a lamb model. Fourteen lambs aged four to six weeks were selected. In six lambs, monocrotaline pyrrole was injected parenterally to create pulmonary hypertension (PH group). Eight other lambs served as unaltered controls (control group). The blood flow velocities were sampled in 1mm increments along the anterior—posterior axis of the branch arteries. The maximum velocity of the forward flow in the left pulmonary artery was higher than that in the right pulmonary artery in the control group (71.7 ± 15.9cm/s vs 60.2 ± 13.5; p < 0.05). The fastest backward flow was located at the posterior position of the vessel in the right pulmonary artery in the control group. No significant bias in location was shown in the left pulmonary artery. Using indices of P90, acceleration time, P90*AcT, the velocity waveforms in the PH group were compared with those in the control group. In the left pulmonary artery, every index in the control group showed a significantly greater value that in the PH group. On the other hand, no significant differences were found between either group in the right pulmonary artery.


2000 ◽  
Vol 10 (4) ◽  
pp. 419-422 ◽  
Author(s):  
Astolfo Serra ◽  
Francisco Chamie ◽  
R.M. Freedom

AbstractMajor abnormalities of pulmonary circulation are uncommon in the patient with pulmonary atresia and intact ventricular septum. Non-confluent pulmonary arteries have only rarely been described in this setting. In this case report, we describe a patient in whom the pulmonary arteries are non-confluent, with the right pulmonary artery supplied through a right-sided arterial duct, and the left pulmonary artery most likely through a fifth aortic arch, thus providing a systemic-to-pulmonary arterial connection. We discuss the various forms of non-confluent pulmonary arteries in the setting of pulmonary atresia and intact ventricular septum.


2020 ◽  
Vol 10 ◽  
pp. 5
Author(s):  
Pierre D. Maldjian ◽  
Kevin R. Adams

We report a case of a partial anomalous left pulmonary artery sling in an adult patient as an incidental finding on computed tomography. There is a normal bifurcation of the pulmonary trunk into right and left pulmonary arteries with anomalous origin of the left upper lobe pulmonary artery from the right pulmonary artery. The anomalous vessel passes between the trachea and esophagus forming a partial left pulmonary artery sling without airway compression.


2012 ◽  
Vol 23 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Goran Cuturilo ◽  
Danijela Drakulic ◽  
Aleksandar Krstic ◽  
Marija Gradinac ◽  
Tamara Ilisic ◽  
...  

AbstractMalposition of the branch pulmonary arteries is a rare malformation with two forms. In the typical form, pulmonary arteries cross each other as they proceed to their respective lungs. The “lesser form” is characterised by the left pulmonary artery ostium lying directly superior to the ostium of the right pulmonary artery, without crossing of the branch pulmonary arteries. Malposition of the branch pulmonary arteries is often associated with other congenital heart defects and extracardiac anomalies, as well as with 22q11.2 microdeletion. We report three infants with crossed pulmonary arteries and one adolescent with “lesser form” of the malformation. The results suggest that diagnosis of malposition of the branch pulmonary arteries could be challenging if based solely on echocardiography, whereas modern imaging technologies such as contrast computed tomography and magnetic resonance angiography provide reliable establishment of diagnosis. In addition, we performed the first molecular characterisation of the 22q11.2 region among patients with malposition of the branch pulmonary arteries and revealed a 3-megabase deletion in two out of four patients.


Sign in / Sign up

Export Citation Format

Share Document