scholarly journals Partial Anomalous Left Pulmonary Artery Sling in an Adult

2020 ◽  
Vol 10 ◽  
pp. 5
Author(s):  
Pierre D. Maldjian ◽  
Kevin R. Adams

We report a case of a partial anomalous left pulmonary artery sling in an adult patient as an incidental finding on computed tomography. There is a normal bifurcation of the pulmonary trunk into right and left pulmonary arteries with anomalous origin of the left upper lobe pulmonary artery from the right pulmonary artery. The anomalous vessel passes between the trachea and esophagus forming a partial left pulmonary artery sling without airway compression.

2017 ◽  
Vol 10 (1) ◽  
pp. 94-96
Author(s):  
Mohamed Leye ◽  
IdrissaDemba Ba ◽  
Ababacar Mbengue ◽  
Adama Sawadogo ◽  
Fatou Aw ◽  
...  

Pulmonary Artery Sling (PAS) is a rare congenital heart disease due to abnormal origin of Left Pulmonary Artery (LPA) from the Right Pulmonary Artery (RPA), then encircling the distal part of the trachea. The treatment is a surgical repair consisting of reimplantation of the LPA on the main pulmonary artery over cardiopulmonary bypass. The authors report a clinical case of PAS in a 5.5 years old boy diagnosed in Senegal then successfully operated in France.Cardiovasc. j. 2017; 10(1): 94-96


Author(s):  
Nguyen Chi Lang ◽  
Nguyen Thi Ngoan ◽  
Nguyen Duc Khoi

We present the case of a 4-year-old girl, bronchofiberscopy (scope diameter 2.8mm): one third below oftrachea, which was divided into two orifices. The orifice on the right side was larger and divided into twosuborifices. The left orifice was stenosis and could not pass the bronchoscope. Whole trachea mucosa was redand edema, and could not observe the cartilage ring of trachea. Chest X-ray: infiltration of right lower lobe.Chest CT multiple probes with contrast injection confirmed that: At the sixth to seventh thoracic vertebral level,the left pulmonary artery was arisen from the right pulmonary artery then passed in between the behindtrachea and anterior oesophagus to reach the left lung hilar. And at the fourth to fifth thoracic vertebral level,the right upper bronchus was arisen from trachea and then the trachea was shrunk diameter to reach the leftlung hilar, at the end, the trachea divided 2 bronchi: left main bronchus and “bridging bronchus”. Thatbronchus from left lung hilar returned to the right lung.This patient was diagnosed birth defect: Left pulmonary artery sling with trachea stenosis, type IIA.


1995 ◽  
Vol 117 (2) ◽  
pp. 237-241
Author(s):  
H. Katayama ◽  
G. W. Henry ◽  
C. L. Lucas ◽  
B. Ha ◽  
J. I. Ferreiro ◽  
...  

We studied the detailed profiles of blood flow in the right and left pulmonary arteries using 20 MHz pulsed Doppler ultrasound equipment in a lamb model. Fourteen lambs aged four to six weeks were selected. In six lambs, monocrotaline pyrrole was injected parenterally to create pulmonary hypertension (PH group). Eight other lambs served as unaltered controls (control group). The blood flow velocities were sampled in 1mm increments along the anterior—posterior axis of the branch arteries. The maximum velocity of the forward flow in the left pulmonary artery was higher than that in the right pulmonary artery in the control group (71.7 ± 15.9cm/s vs 60.2 ± 13.5; p < 0.05). The fastest backward flow was located at the posterior position of the vessel in the right pulmonary artery in the control group. No significant bias in location was shown in the left pulmonary artery. Using indices of P90, acceleration time, P90*AcT, the velocity waveforms in the PH group were compared with those in the control group. In the left pulmonary artery, every index in the control group showed a significantly greater value that in the PH group. On the other hand, no significant differences were found between either group in the right pulmonary artery.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
K Starzyk ◽  
P Dybich ◽  
K Ciuraszkiewicz ◽  
W Rokita ◽  
B Wozakowska-Kaplon

Abstract Pulmonary embolism is one of the leading causes of maternal mortality despite a low incidence of during pregnancy. We present 32-year-old woman, in the 35 week of first pregnancy, admitted to the Intensive Care Unit with dyspnea, tachycardia, cyanosis. Echocardiography confirmed the presence of embolic material in the main trunk of pulmonary artery, spreading to the right pulmonary artery. D-dimer and troponin T level were elevated, BNP remained within the normal range. The risk in PESI scale was assumed as intermediate high. LMWH therapy was initiated, the patient was constantly monitored. Venous thrombotic disease in lower extremities was excluded by ultrasonography. The treatment was carried out under obstetric supervision. The clinical state gradually improved, the patient was hemodynamically stable. Serial echocardiographic testing, revealed gradual regression of changes in the pulmonary trunk. Normalization of troponins and lowering of BNP levels were observed. The pregnancy was terminated in 39 week, by cesarean section (obstetric indications). The LMWH was continued few days after delivery, as the patient started lactation. She decided to terminate lactation in a first week after delivery so the therapy was switched into rivaroxaban for at least 3 months. Echocardiography after 3 month confirmed lack of changes in pulmonary trunk, the risk of pulmonary hypertension was low. Echocardiography can be a method of choice for confirming and monitoring pulmonary embolism during pregnancy, in a situation of high or intermediate clinical risk and good visualization of changes in pulmonary arteries Abstract P701 Figure. Embolism of pulmonary trunk and RPA


2000 ◽  
Vol 10 (4) ◽  
pp. 419-422 ◽  
Author(s):  
Astolfo Serra ◽  
Francisco Chamie ◽  
R.M. Freedom

AbstractMajor abnormalities of pulmonary circulation are uncommon in the patient with pulmonary atresia and intact ventricular septum. Non-confluent pulmonary arteries have only rarely been described in this setting. In this case report, we describe a patient in whom the pulmonary arteries are non-confluent, with the right pulmonary artery supplied through a right-sided arterial duct, and the left pulmonary artery most likely through a fifth aortic arch, thus providing a systemic-to-pulmonary arterial connection. We discuss the various forms of non-confluent pulmonary arteries in the setting of pulmonary atresia and intact ventricular septum.


2021 ◽  
Vol 13 (3) ◽  
pp. 254-257
Author(s):  
İlker Mercan ◽  
Muhammet Akyuz ◽  
Onur Işık

Pulmonary arterial sling (PAS) is a relatively rare congenital anomaly in which left pulmonary artery branch originates abnormally from the right pulmonary artery, eventually resulting with respiratory symptoms, due to airway obstruction. In this report, we present a PAS in a neonate who showed progressive respiratory distress in the second week following delivery. At 25 days of age, the patient underwent total surgical correction of the anomaly, during which left pulmonary artery reimplantation to main pulmonary artery without the use of cardiopulmonary bypass was employed. Following an uneventful recovery, the patient was discharged eighteen days after surgery.


1996 ◽  
Vol 78 (6) ◽  
pp. 723-727 ◽  
Author(s):  
William T Pu ◽  
Taylor Chung ◽  
Fredric A Hoffer ◽  
Richard A Jonas ◽  
Tal Geva

2012 ◽  
Vol 23 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Goran Cuturilo ◽  
Danijela Drakulic ◽  
Aleksandar Krstic ◽  
Marija Gradinac ◽  
Tamara Ilisic ◽  
...  

AbstractMalposition of the branch pulmonary arteries is a rare malformation with two forms. In the typical form, pulmonary arteries cross each other as they proceed to their respective lungs. The “lesser form” is characterised by the left pulmonary artery ostium lying directly superior to the ostium of the right pulmonary artery, without crossing of the branch pulmonary arteries. Malposition of the branch pulmonary arteries is often associated with other congenital heart defects and extracardiac anomalies, as well as with 22q11.2 microdeletion. We report three infants with crossed pulmonary arteries and one adolescent with “lesser form” of the malformation. The results suggest that diagnosis of malposition of the branch pulmonary arteries could be challenging if based solely on echocardiography, whereas modern imaging technologies such as contrast computed tomography and magnetic resonance angiography provide reliable establishment of diagnosis. In addition, we performed the first molecular characterisation of the 22q11.2 region among patients with malposition of the branch pulmonary arteries and revealed a 3-megabase deletion in two out of four patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohammadreza Edraki ◽  
Bahram Ghasemzadeh ◽  
Kambiz Keshavarz ◽  
Ahmadali Amirghofran ◽  
Hamid Mohammadi ◽  
...  

Abstract Introduction The absence of a pulmonary artery is a rare congenital anomaly that occurs isolated or with other congenital cardiac disorders, particularly tetralogy of Fallot (TOF); meanwhile, a hidden pulmonary artery might exist and originate from a closed ductus arteriosus (DA), which can be stented to reach the artery. Material and methods This prospective study describes cardiac catheterization of nine TOF patients diagnosed with the absence of the left pulmonary artery before the operation. The patients were stratified into three groups: group one, whose closed DA was found and connected to the hidden pulmonary artery with a stent; group two, whose hidden pulmonary arteries were found via the pulmonary vein angiography; and group three, for whom we could not find the remnant of the DA, or our attempt to stent the DA to the hidden pulmonary artery was not successful. We also evaluated outcomes of six other surgically-corrected TOF patients who were operated with the absent left pulmonary artery. Results The first group included the patients aged 1, 24, and 30 months, whose CT angiography 6–9 months after stenting showed acceptable left pulmonary artery diameter for surgical correction, and the pulmonary vein angiography of the second group showed a hidden left pulmonary artery with a suitable diameter for surgical correction. However, we were unable to find or stent the DA of group three patients, aged 12, 38, 60, and 63 months. Earlier Angiography might have increased the chance of access to the hidden vessel. Apart from these three groups, follow-ups of six other patients previously corrected with only the right pulmonary artery revealed pulmonary artery hypertension in all patients. Conclusion The concealed pulmonary artery might be found, and stenting of the closed DA to it might be performed to improve the diameter of the diminutive pulmonary artery. This procedure may allow TOF total surgical correction with two pulmonary arteries. Besides, pulmonary vein angiography can reveal the hidden pulmonary artery.


2020 ◽  
Author(s):  
Mohammadreza Edraki ◽  
Bahram Ghasemzadeh ◽  
Kambiz Keshavarz ◽  
Ahmadali Amirghofran ◽  
Hamid Mohammadi ◽  
...  

Abstract Introduction: The absence of a pulmonary artery is a rare congenital anomaly that occurs isolated or with other congenital cardiac disorders, particularly tetralogy of Fallot (TOF); meanwhile, a hidden pulmonary artery might exist and originate from a closed ductus arteriosus (DA), which can be stented to reach the artery.Material and methods: This prospective study describes cardiac catheterization of nine TOF patients diagnosed with the absence of the left pulmonary artery before the operation. The patients were stratified into three groups: group one, whose closed DA was found and connected to the hidden pulmonary artery with a stent; group two, whose hidden pulmonary arteries were found via the pulmonary vein angiography; and group three, for whom we could not find the remnant of the DA, or our attempt to stent the DA to the hidden pulmonary artery was not successful.We also evaluated outcomes of six other surgically-corrected TOF patients who were operated with the absent left pulmonary artery.Results: The first group included the patients aged 1, 24, and 30 months, whose CT angiography 6-9 months after stenting showed acceptable left pulmonary artery diameter for surgical correction, and the pulmonary vein angiography of the second group showed a hidden left pulmonary artery with a suitable diameter for surgical correction.However, we were unable to find or stent the DA of group three patients, aged 12, 38, 60, and 63 months. Earlier Angiography might have increased the chance of access to the hidden vessel. Apart from these three groups, follow-ups of six other patients previously corrected with only the right pulmonary artery revealed pulmonary artery hypertension in all patients.Conclusion: The concealed pulmonary artery might be found, and stenting of the closed DA to it might be performed to improve the diameter of the diminutive pulmonary artery. This procedure may allow TOF total surgical correction with two pulmonary arteries. Besides, pulmonary vein angiography can reveal the hidden pulmonary artery.


Sign in / Sign up

Export Citation Format

Share Document