scholarly journals Image quality assessment of deep learning image reconstruction in computed tomography using tube current modulation: a phantom study

Author(s):  
kazuhiro takeuchi ◽  
Yasuhiro Ide ◽  
Yuichiro Mori ◽  
Yusuke Uehara ◽  
Hiroshi Sukeishi ◽  
...  

Abstract The novel deep learning image reconstruction (DLIR) is known to change its image quality characteristics according to object contrast and image noise. In clinical practice, computed tomography (CT) image noise is usually controlled by tube current modulation (TCM) to accommodate changes in object size. This study aimed to evaluate the image quality characteristics of DLIR for different object sizes when in-plane noise is controlled by TCM. We used Mercury 4.0 phantoms with different object sizes. Phantom image acquisition was performed on a GE Revolution CT system to investigate the impact of the DLIR algorithm compared to standard reconstructions: filtered back projection (FBP) and hybrid iterative reconstruction (hybrid-IR). For image quality evaluation, the noise power spectrum (NPS), task-based transfer function (TTF), and detectability index (d') were determined. The NPS of DLIR was very similar to that of FBP, and the information in the high-frequency region was maintained. In terms of TTF, DLIR showed higher resolution than hybrid-IR at low- to medium-contrast (Δ50, Δ90HU), but not necessarily higher than FBP. At the simulated contrast and lesion size, DLIR showed higher detectability than hybrid-IR, regardless of the phantom size. In this study, we evaluated a novel DLIR algorithm by reproducing clinical behaviors. The findings indicate that DLIR produces higher image quality than hybrid-IR regardless of the phantom size, although it depends on the reconstruction strength.

2009 ◽  
Vol 50 (4) ◽  
pp. 446-454 ◽  
Author(s):  
P. Dahlman ◽  
L. Jangland ◽  
M. Segelsjö ◽  
A. Magnusson

Background: Since computed tomography (CT) urography began to replace excretory urography as the primary imaging technique in uroradiology, the collective radiation dose to the patients has increased. Purpose: To examine the changes in the CT urography protocol for investigating suspected urinary tract malignancy between the years 1997 and 2008, and how these changes have influenced the mean effective dose. Material and Methods: The study was based on 102 patients (mean age 66.1±14.8 years, range 31–89 years; 30 female, 72 male) divided into five groups (groups A–E) corresponding to the time points at which changes were made to the CT urography protocol. The mean effective doses were estimated using the ImPACT CT Patient Dosimetry Calculator. Results: The number of scan phases at CT urography was reduced from four to three in 1999, resulting in a reduction of the mean effective dose from 29.9/22.5 (female [F]/male [M]) mSv (group A) to 26.1/18.9 (F/M) mSv (group B). In 2001, mAs settings were adapted to patient size, and the mean effective dose was reduced to 16.8/12.0 (F/M) mSv (group C). In 2005, scans were performed with a multidetector-row CT equipped with automatic tube current modulation in the x- and y-axis (CARE Dose). The effective mAs was also lowered in the unenhanced and excretory phase, yet the mean effective dose increased to 18.2/13.1 (F/M) mSv (group D), since the effective mAs had to be increased in the corticomedullary phase to maintain image quality. In 2008, as tube current modulation in the x-, y-, and z-axis was introduced (CARE Dose4D), the mean effective dose was reduced to 11.7/8.8 (F/M) mSv (group E). Conclusion: This study shows that the individual mean effective dose to patients undergoing CT urography has decreased by 60%, from 29.9/22.5 (F/M) mSv in 1997 to 11.7/8.8 (F/M) mSv in 2008.


Sign in / Sign up

Export Citation Format

Share Document