scholarly journals Adapted Convolutional Neural Networks and Long Short-Term Memory for Host Utilization prediction in Cloud Data Center

Author(s):  
ARIF ullah ◽  
Irshad Ahmed Abbasi ◽  
Muhammad Zubair Rehman ◽  
Tanweer Alam ◽  
Hanane Aznaoui

Abstract Infrastructure service model provides different kinds of virtual computing resources such as networking, storage service, and hardware as per user demands. Host load prediction is an important element in cloud computing for improvement in the resource allocation systems. Hosting initialization issues still exist in cloud computing due to this problem hardware resource allocation takes serval minutes of delay in the response process. To solve this issue prediction techniques are used for proper prediction in the cloud data center to dynamically scale the cloud in order for maintaining a high quality of services. Therefore in this paper, we propose a hybrid convolutional neural network long with short-term memory model for host prediction. In the proposed hybrid model, vector auto regression method is firstly used to input the data for analysis which filters the linear interdependencies among the multivariate data. Then the enduring data are computed and entered into the convolutional neural network layer that extracts complex features for each central processing unit and virtual machine usage components after that long short-term memory is used which is suitable for modeling temporal information of irregular trends in time series components. In all process, the main contribution is that we used scaled polynomial constant unit activation function which is most suitable for this kind of model. Due to the higher inconsistency in data center, accurate prediction is important in cloud systems. For this reason in this paper two real-world load traces were used to evaluate the performance. One is the load trace in the Google data center, while the other is in the traditional distributed system. The experiment results show that our proposed method achieves state-of-the-art performance with higher accuracy in both datasets as compared with ARIMA-LSTM, VAR-GRU, VAR-MLP, and CNN models.

2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


Sign in / Sign up

Export Citation Format

Share Document