scholarly journals On optical transmittance of ultra diluted gas

2020 ◽  
Author(s):  
Jakub Ratajczak

Abstract The paper proposes a model of optical transmittance of ultra diluted gas taking into account gas particles non-locality, the quantum effect of wave function spreading derived from solving the Schr ̈odinger equation for a free particle. A significant increase in the transmittance of such gas is envisaged as compared to the classical predictions. Some quantitative and qualitative consequences of the model are indicated and falsifying experiments are proposed. The classic Beer-Lambert law equation within range of its applicability is derived from the model. Remarks to some astrophysical phenomena and possible interpretations of Quantum Mechanics are made. An experiment consistent with the predictions of this model is referenced.

2002 ◽  
Vol 80 (7) ◽  
pp. 755-766 ◽  
Author(s):  
R F Holub ◽  
P K Smrz

We describe a simple effect predicted by standard quantum mechanics concerning a particle bound in a potential well brought to the zero-energy state by deformation of the well. When the effect takes place within a crack with impermeable walls the probability of localization of the particle reaches its maximum near the end of the crack. The wave function describing the bound particle may thus decohere far from the potential well. There are numerous instances of experimental data, gathered mostly by geochemists and other scientists over the last several decades, that are anomalous and defy all attempts to explain them by means of classical chemistry and physics. The common attribute of these data is a strange transport of particles over large distances that may be caused by the quantum effect described in the first part of the paper. The motivation for writing this paper is our hope to stimulate interest and critical testing of such an hypothesis. PACS Nos.: 03.65, 82.90, 91.90


2018 ◽  
Vol 73 (12) ◽  
pp. 1129-1135
Author(s):  
S.A. Bruce

AbstractIt is known that there is no room for anti-particles within the Schrödinger regime in quantum mechanics. In this article, we derive a (non-relativistic) Schrödinger-like wave equation for a spin-$1/2$ free particle in 3 + 1 space-time dimensions, which includes both positive- and negative-energy eigenstates. We show that, under minimal interactions, this equation is invariant under $\mathcal{P}\mathcal{T}$ and 𝒞 discrete symmetries. An immediate consequence of this is that the particle exhibits Zitterbewegung (‘trembling motion’), which arises from the interference of positive- and negative-energy wave function components.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nana Cabo Bizet ◽  
César Damián ◽  
Octavio Obregón ◽  
Roberto Santos-Silva

Exploring the analogy between quantum mechanics and statistical mechanics, we formulate an integrated version of the Quantropy functional. With this prescription, we compute the propagator associated to Boltzmann–Gibbs statistics in the semiclassical approximation as K=F(T)exp(iScl/ℏ). We determine also propagators associated to different nonadditive statistics; those are the entropies depending only on the probability S± and Tsallis entropy Sq. For S±, we obtain a power series solution for the probability vs. the energy, which can be analytically continued to the complex plane and employed to obtain the propagators. Our work is motivated by the work of Nobre et al. where a modified q-Schrödinger equation is obtained that provides the wave function for the free particle as a q-exponential. The modified q-propagator obtained with our method leads to the same q-wave function for that case. The procedure presented in this work allows to calculate q-wave functions in problems with interactions determining nonlinear quantum implications of nonadditive statistics. In a similar manner, the corresponding generalized wave functions associated to S± can also be constructed. The corrections to the original propagator are explicitly determined in the case of a free particle and the harmonic oscillator for which the semiclassical approximation is exact, and also the case of a particle with an infinite potential barrier is discussed.


Author(s):  
Alyssa Ney

This chapter presents the argument for wave function realism that it is the only realist interpretation of quantum theories that can maintain a fundamentally separable and local metaphysics. It is commonly seen as a consequence of entanglement and Bell’s Theorem that quantum mechanics entails quantum nonseparability and nonlocality. Yet although all rival realist ontological interpretations of quantum mechanics involve either a nonseparable or a nonlocal fundamental metaphysics, the metaphysics of wave function realism is fundamentally both separable and local, although the view also makes room for nonfundamental nonseparability and nonlocality. The chapter considers several arguments that could explain why one should prefer interpretations of quantum theories that are separable and local, and concludes with a defense of intuitions in quantum interpretation.


2018 ◽  
Vol 33 (22) ◽  
pp. 1850129
Author(s):  
Faramarz Rahmani ◽  
Mehdi Golshani ◽  
Ghadir Jafari

In objective gravitational reduction of the wave function of a quantum system, the classical limit of the system is obtained in terms of the objective properties of the system. On the other hand, in Bohmian quantum mechanics the usual criterion for getting classical limit is the vanishing of the quantum potential or the quantum force of the system, which suffers from the lack of an objective description. In this regard, we investigated the usual criterion of getting the classical limit of a free particle in Bohmian quantum mechanics. Then we argued how it is possible to have an objective gravitational classical limit related to the Bohmian mechanical concepts like quantum potential or quantum force. Also we derived a differential equation related to the wave function reduction. An interesting connection will be made between Bohmian mechanics and gravitational concepts.


2014 ◽  
Vol 5 (3) ◽  
pp. 871-981 ◽  
Author(s):  
Pang Xiao Feng

We establish the nonlinear quantum mechanics due to difficulties and problems of original quantum mechanics, in which microscopic particles have only a wave feature, not corpuscle feature, which are completely not consistent with experimental results and traditional concept of particle. In this theory the microscopic particles are no longer a wave, but localized and have a wave-corpuscle duality, which are represented by the following facts, the solutions of dynamic equation describing the particles have a wave-corpuscle duality, namely it consists of a mass center with constant size and carrier wave, is localized and stable and has a determinant mass, momentum and energy, which obey also generally conservation laws of motion, their motions meet both the Hamilton equation, Euler-Lagrange equation and Newton-type equation, their collision satisfies also the classical rule of collision of macroscopic particles, the uncertainty of their position and momentum is denoted by the minimum principle of uncertainty. Meanwhile the microscopic particles in this theory can both propagate in solitary wave with certain frequency and amplitude and generate reflection and transmission at the interfaces, thus they have also a wave feature, which but are different from linear and KdV solitary wave’s. Therefore the nonlinear quantum mechanics changes thoroughly the natures of microscopic particles due to the nonlinear interactions. In this investigation we gave systematically and completely the distinctions and variations between linear and nonlinear quantum mechanics, including the significances and representations of wave function and mechanical quantities, superposition principle of wave function, property of microscopic particle, eigenvalue problem, uncertainty relation and the methods solving the dynamic equations, from which we found nonlinear quantum mechanics is fully new and different from linear quantum mechanics. Finally, we verify further the correctness of properties of microscopic particles described by nonlinear quantum mechanics using the experimental results of light soliton in fiber and water soliton, which are described by same nonlinear Schrödinger equation. Thus we affirm that nonlinear quantum mechanics is correct and useful, it can be used to study the real properties of microscopic particles in physical systems.


Sign in / Sign up

Export Citation Format

Share Document