quantum interpretation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-27
Author(s):  
Xuan-Bach Le ◽  
Shang-Wei Lin ◽  
Jun Sun ◽  
David Sanan

It is well-known that quantum programs are not only complicated to design but also challenging to verify because the quantum states can have exponential size and require sophisticated mathematics to encode and manipulate. To tackle the state-space explosion problem for quantum reasoning, we propose a Hoare-style inference framework that supports local reasoning for quantum programs. By providing a quantum interpretation of the separating conjunction, we are able to infuse separation logic into our framework and apply local reasoning using a quantum frame rule that is similar to the classical frame rule. For evaluation, we apply our framework to verify various quantum programs including Deutsch–Jozsa’s algorithm and Grover's algorithm.


Author(s):  
José G. Perillán

Scientists regularly employ historical narrative as a rhetorical tool in their communication of science, yet there’s been little reflection on its effects within scientific communities and beyond. Science Between Myth and History begins to unravel these threads of influence. The stories scientists tell are not just poorly researched scholarly histories, they are myth-histories, a chimeric genre that bridges distinct narrative modes. This study goes beyond polarizing questions about who owns the history of science and establishes a common ground from which to better understand the messy and lasting legacy of the stories scientists tell. It aims to stimulate vigorous conversation among science practitioners, scholars, and communicators. Scientific myth-histories undoubtedly deliver value, coherence, and inspiration to their communities. They are tools used to broker scientific consensus, resolve controversies, and navigate power dynamics. Yet beyond the explicit intent and rationale behind their use, these narratives tend to have great rhetorical power and social agency that bear unintended consequences. This book unpacks the concept of myth-history and explores four case studies in which scientist storytellers use their narratives to teach, build consensus, and inform the broader public. From geo-politically informed quantum interpretation debates to high-stakes gene-editing patent disputes, these case studies illustrate the implications of storytelling in science. Science Between Myth and History calls on scientists not to eschew writing about their history, but to take more account of the stories they tell and the image of science they project. In this time of eroding common ground, when many find themselves dependent on, yet distrustful of scientific research, this book interrogates the effects of mismatched, dissonant portraits of science.


Author(s):  
José G. Perillán

An unhappy complaint by celebrated Irish physicist John Stuart Bell, who challenged an unchecked quantum orthodoxy, opens Chapter 2. At first his quote seems little more than a disgruntled student blowing off steam. Closer examination reveals much higher stakes. This chapter probes Bell’s frustrations toward his physics training at Queen’s University Belfast in the late 1940s. He complained bitterly about an entrenched quantum orthodoxy supported by canonical narratives that took hold in the early 1930s and continued to dominate the field for decades. The orthodox quantum interpretation eventually became synonymous with the city of Copenhagen and was used widely in the international physics community to filter out unwanted alternate interpretations, shut down interpretational debate, and promote a pragmatically productive culture of scientific consensus.


Author(s):  
Alyssa Ney

This chapter presents the argument for wave function realism that it is the only realist interpretation of quantum theories that can maintain a fundamentally separable and local metaphysics. It is commonly seen as a consequence of entanglement and Bell’s Theorem that quantum mechanics entails quantum nonseparability and nonlocality. Yet although all rival realist ontological interpretations of quantum mechanics involve either a nonseparable or a nonlocal fundamental metaphysics, the metaphysics of wave function realism is fundamentally both separable and local, although the view also makes room for nonfundamental nonseparability and nonlocality. The chapter considers several arguments that could explain why one should prefer interpretations of quantum theories that are separable and local, and concludes with a defense of intuitions in quantum interpretation.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050326
Author(s):  
Abdul Jawad ◽  
Shahid Chaudhary

Among many open questions in theoretical physics, consistent quantum gravity theory is still a major issue to be solved. Recent major works in phase transitions of black holes (BH) can be helpful for quantum interpretation of classical gravity. We study the new effective method to discuss the thermodynamic phase transitions onto well renowned regular BHs. Ordinary approaches of phase transitions depend upon equation of state and it is impossible to obtain all critical points with ordinary approaches. This study is derived from the slope of temperature versus entropy and it provides the possibility of finding all the critical points analytically. This technique provides pressure, which is different from standard relation of pressure and independent of other thermodynamical relations. We discuss some issues in ordinary methods and provide an easy approach to investigate the critical behavior of thermodynamical quantities. We find out the phase transitions points and horizon radii of non-physical range for BHs. We also use the new thermodynamical relations to briefly study well-known Joule–Thomson (JT) effect on regular BH.


2020 ◽  
Vol 45 (2-3) ◽  
pp. 123-173
Author(s):  
Marta Jordi Taltavull

Abstract In 1921, the experimental physicist Rudolf Ladenburg put forward the first quantum interpretation of optical dispersion. Theoretical physicists had tried to explain dispersion from the point of view of quantum theory ever since 1913, when Niels Bohr proposed his quantum model of atom. Yet, their theories proved unsuccessful. It was Ladenburg who gave a breakthrough step toward our quantum understanding of dispersion. In order to understand Ladenburg’s step, I analyze Ladenburg’s experimental work on dispersion prior to 1913, the reasons why the first theories of dispersion after 1913 were not satisfactory, and Ladenburg’s 1921 proposal. I argue that Ladenburg’s early experimental work on dispersion is indispensable to understand his 1921 paper. The specific kind of experiments he performed before 1913, the related interpretative problems, and the way he tried to solve them, led him reapproach the dispersion problem in 1921 in a way that was completely different from the way theoretical physicists had done it before.


2020 ◽  
Vol 34 (18) ◽  
pp. 2030002
Author(s):  
Donald C. Chang

We know energy and mass of a particle can be connected by [Formula: see text]. What is the physical basis of this relation? Historically, it was thought to be based on the principle of relativity (PR). A careful examination of the literature, however, indicated that this understanding is not true. Einstein did not derive this relation from PR. Instead, his argument was mainly based on thought experiments, which focused on the similarity between radiation and matter. Following this hint, we suspect that the mass–energy equivalence could be based on the quantum property of wave–particle duality. We know photon and electron can behave as a particle as well as a wave. Such a wave property could make the particle behave differently from Newtonian mechanics. Indeed, using a wave model which treats particles as excitations of the vacuum, we show that the mass–energy equivalence relation can be directly derived based on the quantum relations of Planck and de Broglie. This wave hypothesis has several advantages; not only can it explain naturally why particles can be created in the vacuum; it also predicts that a particle cannot travel faster than the speed of light. This hypothesis can also be tested in experiment.


Sign in / Sign up

Export Citation Format

Share Document