scholarly journals TopFuzz4SA: An Integrated Fuzzy Neural Network with Topic-aware Auto-encoding for Sentiment Analysis

Author(s):  
Tham Vo

Abstract Recent advanced deep learning architectures, such as neural seq2seq, transformer, etc. have demonstrated remarkable improvements in multi-typed sentiment classification tasks. Even though recent transformer-based and seq2seq-based models have successfully enabled to capture rich-contextual information of texts, they are still lacking of attention on incorporating the global semantic information, such as topic, in order to sufficiently leverage the performance of downstream SA task. Moreover, emotional expressions of users are normally in forms of natural human-written textual data which might consist a lot of noise and ambiguity which impose great challenges on the processes of textual representation learning as well as sentiment polarity prediction. To meet these challenges, we propose a novel integrated fuzzy-neural architecture with a topic-driven textual representation learning approach for handling SA task, called as: TopFuzz4SA. Specifically, in the proposed TopFuzz4SA model, we first apply a topic-driven neural encoder-decoder architecture with the incorporation of latent topic embedding and attention mechanism to sufficiently learn both rich contextual and global semantic information of the given textual data. Then, the achieved rich semantic representations of texts are fed into a fused deep fuzzy neural network to effectively reduce the feature ambiguity and noise, forming the final textual representations for sentiment classification task. Extensive experiments in benchmark datasets demonstrate the effectiveness of our proposed TopFuzz4SA model in comparing with contemporary state-of-the-art baselines.

2020 ◽  
Vol 34 (05) ◽  
pp. 9685-9692
Author(s):  
Yaowei Zheng ◽  
Richong Zhang ◽  
Samuel Mensah ◽  
Yongyi Mao

Aspect-level sentiment classification (ALSC) aims at predicting the sentiment polarity of a specific aspect term occurring in a sentence. This task requires learning a representation by aggregating the relevant contextual features concerning the aspect term. Existing methods cannot sufficiently leverage the syntactic structure of the sentence, and hence are difficult to distinguish different sentiments for multiple aspects in a sentence. We perceive the limitations of the previous methods and propose a hypothesis about finding crucial contextual information with the help of syntactic structure. For this purpose, we present a neural network model named RepWalk which performs a replicated random walk on a syntax graph, to effectively focus on the informative contextual words. Empirical studies show that our model outperforms recent models on most of the benchmark datasets for the ALSC task. The results suggest that our method for incorporating syntactic structure enriches the representation for the classification.


Computation ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Muhammad Anwar Ma’sum ◽  
Hadaiq Rolis Sanabila ◽  
Petrus Mursanto ◽  
Wisnu Jatmiko

One of the challenges in machine learning is a classification in multi-modal data. The problem needs a customized method as the data has a feature that spreads in several areas. This study proposed a multi-codebook fuzzy neural network classifiers using clustering and incremental learning approaches to deal with multi-modal data classification. The clustering methods used are K-Means and GMM clustering. Experiment result, on a synthetic dataset, the proposed method achieved the highest performance with 84.76% accuracy. Whereas on the benchmark dataset, the proposed method has the highest performance with 79.94% accuracy. The proposed method has 24.9% and 4.7% improvements in synthetic and benchmark datasets respectively compared to the original version. The proposed classifier has better accuracy compared to a popular neural network with 10% and 4.7% margin in synthetic and benchmark dataset respectively.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


2010 ◽  
Vol 36 (3) ◽  
pp. 459-464 ◽  
Author(s):  
Cheng-Dong LI ◽  
Jian-Qiang YI ◽  
Yi YU ◽  
Dong-Bin ZHAO

2014 ◽  
Vol 8 (1) ◽  
pp. 916-921
Author(s):  
Yuan Yuan ◽  
Wenjun Meng ◽  
Xiaoxia Sun

To address deficiencies in the process of fault diagnosis of belt conveyor, this study uses a BP neural network algorithm combined with fuzzy theory to provide an intelligent fault diagnosis method for belt conveyor and to establish a BP neural network fault diagnosis model with a predictive function. Matlab is used to simulate the fuzzy BP neural network fault diagnosis of the belt conveyor. Results show that the fuzzy neural network can filter out unnecessary information; save time and space; and improve the fault diagnosis recognition, classification, and fault location capabilities of belt conveyor. The proposed model has high practical value for engineering.


Sign in / Sign up

Export Citation Format

Share Document