scholarly journals Combination of Texture and Shape Features Using Machine and Deep Learning Algorithms for Breast Cancer Diagnosis

Author(s):  
Norhene Gargouri ◽  
Raouia Mokni ◽  
Alima Damak ◽  
Dorra Sellami ◽  
Riadh Abid

Abstract Worldwide, breast cancer is a commonly occurring disease in women. Automatic diagnosis of the lesions based on mammographic images is playing an essential role to assist experts. A novel Computer-Aided Diagnosis (CADx) scheme of breast lesion classification is proposed in this paper based on an optimized combination of texture and shape features using machine and deep learning algorithms for mass classification as benign-malignant namely C(M-ZMs)*. The main advantage of using Zernike moments for shape feature extraction is their scale, translation, and rotation invariance property, this allows omitting some of the preprocessing stages in our case. We implemented for texture feature extraction the Monogenic-Local Binary Pattern taking the advantage of lower time and space complexity because monogenic signal analysis needs fewer convolutions and generates more compact feature vectors. Therefore, we used Zernike moments for shape feature extraction due to their scale, translation, and rotation invariance property, this allows omitting some of the preprocessing stages in our proposed system. The proposed system proves its performance on some challenging breast cancer cases where the lesions exist in dense breast tissues. Validation has been undertaken on 520 mammograms from the Digital Database for Screening Mammography Database (DDSM), yielding an accuracy rate of 99.5\%.

2021 ◽  
Vol 9 (3) ◽  
pp. 150-156
Author(s):  
Hanimatim Mu'jizah ◽  
Dian Candra Rini Novitasari

Breast cancer originates from the ducts or lobules of the breast and is the second leading cause of death after cervical cancer. Therefore, early breast cancer screening is required, one of which is mammography. Mammography images can be automatically identified using Computer-Aided Diagnosis by leveraging machine learning classifications. This study analyzes the Support Vector Machine (SVM) in classifying breast cancer. It compares the performance of three features extraction methods used in SVM, namely Histogram of Oriented Gradient (HOG), GLCM, and shape feature extraction. The dataset consists of 320 mammogram image data from MIAS containing 203 normal images and 117 abnormal images. Each extraction method used three kernels, namely Linear, Gaussian, and Polynomial. The shape feature extraction-SVM using Linear kernel shows the best performance with an accuracy of 98.44 %, sensitivity of 100 %, and specificity of 97.50 %.


JAMA ◽  
2017 ◽  
Vol 318 (22) ◽  
pp. 2199 ◽  
Author(s):  
Babak Ehteshami Bejnordi ◽  
Mitko Veta ◽  
Paul Johannes van Diest ◽  
Bram van Ginneken ◽  
Nico Karssemeijer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document