scholarly journals Finite-Time Performance Guaranteed Event-Triggered Adaptive  Control for  Nonlinear Systems with Unknown Control Direction

Author(s):  
Min Wang ◽  
Lixue Wang

Abstract This paper studies the issue of finite-time performance guaranteed event-triggered (ET) adaptive neural tracking control for strict-feedback nonlinear systems with unknown control direction. A novel finite-time performance function is first constructed to describe the prescribed tracking performance, and then a new lemma is given to show the differentiability and boundedness for the performance function, which is important for the verification of the closed-loop stability. Furthermore, with the help of the error transformation technique, the origin constrained tracking error is transformed into an equivalent unconstrained one. By utilizing the first-order sliding mode differentiator, the issue of ``explosion of complexity'' caused by the backstepping design is adequately addressed. Subsequently, an ingenious adaptive updated law is given to co-design the controller and the ET mechanism by the combination of the Nussbaum-type function, thus effectively handling the influences of the measurement error resulted from the ET mechanism and the challenge of the controller design caused by the unknown control direction. The presented event-triggered control scheme can not only guarantee the prescribed tracking performance, but also alleviate the communication burden simultaneously. Finally, numerical and practical examples are provided to demonstrate the validity of the proposed control strategy.

Author(s):  
Salim Labiod ◽  
Hamid Boubertakh ◽  
Thierry Marie Guerra

In this paper, the authors propose two indirect adaptive fuzzy control schemes for a class of uncertain continuous-time single-input single-output (SISO) nonlinear dynamic systems with known and unknown control direction. Within these schemes, fuzzy systems are used to approximate unknown nonlinear functions and the Nussbaum gain technique is used to deal with the unknown control direction. This paper first presents a singularity-free indirect adaptive control algorithm for nonlinear systems with known control direction, and then this control algorithm is generalized for the case of unknown control direction. The proposed adaptive controllers are free from singularity, allow initialization to zero of all adjustable parameters of the used fuzzy systems, and guarantee asymptotic convergence of the tracking error to zero. Simulations performed on a nonlinear system are given to show the feasibility of the proposed adaptive control schemes.


Sign in / Sign up

Export Citation Format

Share Document