scholarly journals Giant cross-Kerr nonlinearity in a four-level Y-type atomic system

2021 ◽  
Vol 13 (3) ◽  
pp. 52
Author(s):  
Nguyen Tuan Anh ◽  
Nguyen Huy Bang ◽  
Doai Van Le

We found the analytical expression for cross-Kerr nonlinear coefficient in a four-level Y-type atomic system. The analytical model is applied to 85Rb atoms and shown that under electromagnetically induced transparency, cross-Kerr nonlinear coefficient is enhanced by several orders of magnitude. At the same time, the amplitude and the sign of cross-Kerr nonlinear coefficient are controlled with respect to the intensity and the frequency of the coupling laser field. The analytical model can be useful to explain the experimental results and to study related effects in nonlinear optics. Full Text: PDF ReferencesC. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, P. Tombesi, "Polarization Qubit Phase Gate in Driven Atomic Media", Phys. Rev. Lett. 90, 197902 (2003). CrossRef C. Zhu, G. Huang, "Giant Kerr Nonlinearity, Controlled Entangled Photons and Polarization Phase Gates in Coupled Quantum-Well Structures", Opt. Express 19, 23364 (2011). CrossRef C. Hang, G. Huang, "Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet", Opt. Express 18(3), 2952 (2010). CrossRef M. Fleischhauer, I. Mamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media", Rev. Mod. Phys. 77, 633 (2005). CrossRef H. Schmidt, And A. Imamogdlu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency", Opt. Lett., 21(23), 1936 (1996). CrossRef H. Kang And Y. Zhu, Phys. "Observation of Large Kerr Nonlinearity at Low Light Intensities", Rev. Lett., 91, 093601 (2003). CrossRef J. Kou, R. G. Wan, Z. H. Kang, H. H. Wang, L. Jiang, X. J. Zhang, Y. Jiang, and J. Y. Gao, "EIT-assisted large cross-Kerr nonlinearity in a four-level inverted-Y atomic system", J. Opt. Soc. Am. B. 27(10), 2035 (2010). CrossRef X. Yang, S. Li, C. Zhang, and H. Wang, "Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system", J. Opt. Soc. Am. B. 26(7), 1423 (2009). CrossRef C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti and P. Tombesi, "Polarization Qubit Phase Gate in Driven Atomic Media", Phys. Rev. Lett. 90, 197902 (2003). CrossRef H. Sun, Y. Niu, S. Jin and S. Gong, "Phase control of cross-phase modulation with electromagnetically induced transparency", J. Phys. B: At. Mol. Opt. Phys. 40, 3037 (2007). CrossRef L.V. Doai, P.V. Trong, D.X. Khoa, and N.H. Bang, "Electromagnetically induced transparency in five-level cascade scheme of 85Rb atoms: An analytical approach", Optik, 125, 3666 (2014). CrossRef D. X. Khoa, P. V. Trong, L. V. Doai and N. H. Bang, "Electromagnetically induced transparency in a five-level cascade system under Doppler broadening: an analytical approach", Phys, Scr. 91, 035401 (2016). CrossRef D.X. Khoa, L.C. Trung, P.V. Thuan, L.V. Doai and N.H. Bang, "Measurement of dispersive profile of a multiwindow electromagnetically induced transparency spectrum in a Doppler-broadened atomic medium", J. Opt. Soc. Am. B 34 (6), 1255 (2017). CrossRef D. X. Khoa, L. V. Doai, D. H. Son, and N. H. Bang, "Enhancement of self-Kerr nonlinearity via electromagnetically induced transparency in a five-level cascade system: an analytical approach", J. Opt. Soc. Am. B., 31, 1330 (2014). CrossRef L.V. Doai, N.L.T. An, D.X. Khoa, V.N. Sau and N.H. Bang, "Manipulating giant cross-Kerr nonlinearity at multiple frequencies in an atomic gaseous medium", J. Opt. Soc. Am. B 36, 2856 (2019). CrossRef D. X. Khoa, L. V. Doai, L. N. M. Anh, L. C. Trung, P. V. Thuan, N. T. Dung, and N. H. Bang, "Optical bistability in a five-level cascade EIT medium: an analytical approach", J. Opt. Soc. Am. B, Vol. 33, 735 (2016). CrossRef N. T. Anh, L. V. Doai, and N. H. Bang, "Manipulating multi-frequency light in a five-level cascade-type atomic medium associated with giant self-Kerr nonlinearity", J. Opt. Soc. Am. B 35, 1233 (2018). CrossRef N. T. Anh, L. V. Doai, D. H. Son, and N. H. Bang, "Manipulating multi-frequency light in a five-level cascade EIT medium under Doppler broadening", Optik 171, 721 (2018). CrossRef D.A. Steck, Rb85 D Line Data: http://Steck.Us/Alkalidata/rubidium85numbers.pdf CrossRef

2010 ◽  
Vol 24 (30) ◽  
pp. 2921-2930 ◽  
Author(s):  
ZHONGHUA HUANG ◽  
AIXI CHEN ◽  
ZHAOCHU CHEN ◽  
LI DENG

In a three-level atomic system, the influences of spontaneously generated coherence on the linear absorption and the Kerr nonlinearity are investigated. Our studies show that properties of linear absorption can be dramatically affected by the effect of spontaneously generated coherence. With increase of intensities of spontaneously generated coherence, absorption inhibition will occur, and finally the atomic medium becomes transparent. Furthermore, we find that the Kerr nonlinearity can be obviously enhanced under the action of effects of spontaneously generated coherence. Comparing with traditional scheme of the electromagnetically induced transparency, absorption and Kerr nonlinearity can be controlled without need another driving field in our scheme.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950031 ◽  
Author(s):  
Nguyen Huy Bang ◽  
Dinh Xuan Khoa ◽  
Nguyen Le Thuy An ◽  
Vu Ngoc Sau ◽  
Doan Hoai Son ◽  
...  

In this work, we study the influence of Doppler broadening on cross-Kerr nonlinearity in a four-level inverted-Y atomic system under electromagnetically induced transparency (EIT) condition. The first- and third-susceptibilities in the presence of Doppler effect are derived as a function of probe, signal and coupling beams and temperature of medium. Under EIT condition, cross-Kerr nonlinearity is enhanced several orders of magnitude compared to that without EIT. The Doppler effect leads to a reduction in the transparent efficiency and thus reduces the amplitude of cross-Kerr nonlinear coefficient. For hot atomic gaseous medium, such consideration of the Doppler effect may be useful for experimental observations and apply to photonic devices operating at different temperature conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Phuong Le Thi Minh ◽  
Doai Le Van ◽  
Khoa Dinh Xuan ◽  
Bang Nguyen Huy

We study optical bistability (OB) in a controllable giant self-Kerr nonlinear atomic gaseous medium placed in a unidirectional ring cavity. The medium is coherently excited by strong controlling field and a weak probe laser field under electromagnetically induced transparency (EIT) and Doppler broadening. In a weak field limit of the probe light, an analytic OB equation for the probe light field is derived as an analytic function of parameters of the controlling field and temperature of the medium. It is shown that OB characters can be manipulated with the parameters due to the controllable properties of the self-Kerr nonlinearity. Furthermore, enhancement of the Kerr nonlinearity reduces the switching intensity threshold and width of the OB.


2013 ◽  
Vol 27 (11) ◽  
pp. 1350037 ◽  
Author(s):  
SOMIA ABD-ELNABI ◽  
K. I. OSMAN

The influence of Doppler broadening on a four-level N-type atomic system has been investigated in the presence of spontaneous generating coherence. The atomic system interacting with three electromagnetic fields and includes the nonradiative decay, the effect of co- and counter-propagation of the fields is considered. The probe susceptibility behaviors can be modified by Doppler broadening via nonperturbative treatments of the density matrix elements solution in the absence and presence of the spontaneous generating coherence. Some interesting features are enhanced for the spectral behaviors and controllability of electromagnetically induced transparency, which were found to be in good agreement to some experimental results without including Zeeman sublevels to the system.


2021 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Thai Doan Thanh ◽  
Nguyen Tuan Anh ◽  
Nguyen Thi Thu Hien ◽  
Hoang Minh Dong ◽  
Nguyen Xuan Hao ◽  
...  

In this work, we investigate subluminal and superluminal light propagation in a vee-type three-level atomic medium under an external magnetic field. The dispersion and absorption behaviors are studied for the cases of absence and presence of a magnetic field. It is found that under an electromagnetically induced transparency condition, the light pulse can be switched between subluminal and superluminal propagation by ON-OFF switching of the magnetic field. Finally, the transient response of the medium is discussed, which shows that the considered scheme has potential applications in magneto-optic switching devices. Full Text: PDF ReferencesBoller K J, Imamoglu A, Harris S E, "Observation of electromagnetically induced transparency", Phys. Rev. Lett. 66 (1991) 2593. CrossRef Fleischhauer M, Imamoglu A, Marangos J P, "Electromagnetically induced transparency: Optics in coherent media", Rev. Mod. Phys. 77 (2005) 633. CrossRef L.V. Hau, S. E. Harris, Z. Dutton, C.H. Bejroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas", Nature, 397 (1999) 594. CrossRef Z. Dutton, N.G.C. Slowe, L.V. Hau, "The art of taming light: ultra-slow and stopped light", Europhysics News, 35 (2004) 33. CrossRef V. Bharti, V. Natarajan, "Sub- and super-luminal light propagation using a Rydberg state", Opt. Commun. 392 (2017) 180-184. CrossRef Khoa D X, Doai L V, Son D H and Bang N H, "Enhancement of self-Kerr nonlinearity via electromagnetically induced transparency in a five-level cascade system: an analytical approach", J. Opt. Soc. Am. B. 31 (2014) 1330. CrossRef Hamedi H R, Gharamaleki A H, and Sahrai M, "Colossal Kerr nonlinearity based on electromagnetically induced transparency in a five-level double-ladder atomic system", Appl. Opt 22 (2016) 5892. CrossRef A. Fountoulakis, A.F. Terzis, E. Paspalakis, "All-optical modulation based on electromagnetically induced transparency", Phys. Lett. A 374, (2010) 3354. CrossRef Khoa D X, Doai L V, Mai Anh L. N, Trung L. C, Thuan P. V, Dung N. T, and Bang N. H, J. "Optical bistability in a five-level cascade EIT medium: an analytical approach", Opt. Soc. Am. B, 33 (2016) 735. CrossRef Hoang Minh Dong, and Nguyen Huy Bang, "Controllable optical switching in a closed-loop three-level lambda system", Phy. Scr. 94, (2019) 115510. CrossRef Dong H M, Doai L V, Sau V N, Khoa D X and Bang N H, "Propagation of a laser pulse in a three-level cascade atomic medium under conditions of electromagnetically induced transparency", Photonics Letter of Poland, 3 (2016) 73. CrossRef Khoa D X, Dong H M, Doai L V and Bang N H, "Propagation of laser pulse in a three-level cascade inhomogeneously broadened medium under electromagnetically induced transparency conditions", Optik 131 (2017) 497. CrossRef H. M. Dong, L.V. Doai, and N.H. Bang, "Pulse propagation in an atomic medium under spontaneously generated coherence, incoherent pumping, and relative laser phase", Opt. Commun. 426 (2018) 553-557. CrossRef Jiahua Li, Rong Yu, Liugang Si, and Xiaoxue Yang, "Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium", J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 065502. CrossRef S. H. Asadpour, H. R. Soleimani, "Polarization dependence of optical bistability in the presence of external magnetic field", Opt. Commun 310 (2014) 120-124. CrossRef H.M. Dong, L.T.Y. Nga, and N.H. Bang, "Optical switching and bistability in a degenerated two-level atomic medium under an external magnetic field", App. Opt. 58, (2019) 4192. CrossRef H. M. Dong, L. T. Y. Nga, D. X. Khoa, N. H. Bang, "Controllable ultraslow optical solitons in a degenerated two-level atomic medium under EIT assisted by a magnetic field", Sci. Rep. 10 (2020) 15298. CrossRef Daniel A. Steck, "Rubidium 87D Line Data," http://steck.us/alkalidata. CrossRef


2021 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Nguyen Van Phu ◽  
Nguyen Huy Bang ◽  
Doai Van Le

The analytical expression for the group index in a degenerated three-level lambda-type atomic system is derived as a function of the parameters of laser fields and external magnetic field. The influence of the external magnetic field on the group index is investigated. It is shown that by changing the magnitude or sign of the external magnetic field, the transparency window with normal dispersion switches to enhanced absorption with anomalous dispersion at the line center and hence the light propagation can be converted between subluminal and superluminal modes. Full Text: PDF ReferencesR. W. Boyd, "Slow and fast light: fundamentals and applications", J. Mod. Opt. 56 (2009) 1908-1915 CrossRef K.J. Boller, A. Imamoglu, S.E. Harris, "Observation of electromagnetically induced transparency", Phys. Rev. Lett. 66 (1991) 2593. CrossRef A. Lezama, S. Barreiro, and A. M. Akulshin, "Electromagnetically induced absorption", Phys. Rev. A 59 (1999) 4732-4735. CrossRef L. V. Hau, S. E. Harris, Z. Dutton, C. H. Bejroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas", Nature 397, 594 (1999) CrossRef L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation", Nature 406 (6793), 277-279 (2000) CrossRef A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hammer, "Observation of Ultraslow and Stored Light Pulses in a Solid", Phys. Rev. Lett. 88, 023602 (2002). CrossRef K. Bencheikh, E. Baldit, S. Briaudeau, P. Monnier, J. A. Levenson, and G. Mélin, "Slow light propagation in a ring erbium-doped fiber", Opt. Express 18 (25), 25642-25648 (2010). CrossRef E. E. Mikhailov, V. A. Sautenkov, I. Novikova, G. R. Welch, "Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas", Phys. Rev. A 69, 063808 (2004). CrossRef E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, G.R. Welch, "Absorption resonance and large negative delay in rubidium vapor with a buffer gas", J. Opt. Soc. Am. B 21, 425 (2004). CrossRef A. M Akulshin and R. J McLean, "Fast light in atomic media", J. Opt. 12 (2010) 104001. CrossRef Vineet Bharti, Vasant Natarajan, "Sub- and super-luminal light propagation using a Rydberg state", Opt. Comm. 392 (2017) 180-184. CrossRef N.T. Anh, L.V. Doai, D.H. Son, and N.H. Bang, "Manipulating multi-frequency light in a five-level cascade EIT medium under Doppler broadening", Optik 171 (2018) 721-727. CrossRef N.T. Anh, L.V. Doai, and N.H. Bang, "Manipulating multi-frequency light in a five-level cascade-type atomic medium associated with giant self-Kerr nonlinearity", J. Opt. Soc. Am. B 35 (2018) 1233. CrossRef N.H. Bang, L.N.M. Anh, N.T. Dung and L.V. Doai, "Comparative Study of Light Manipulation in Three-Level Systems Via Spontaneously Generated Coherence and Relative Phase of Laser Fields*", Commun. Theor. Phys. 71 (2019) 947-954. CrossRef L.V. Doai, "The effect of giant Kerr nonlinearity on group velocity in a six-level inverted-Y atomic system", Physica Scripta 95 (2020) 035104 (7pp). CrossRef P. Kaur and A. Wasan, "Effect of magnetic field on the optical properties of an inhomogeneously broadened multilevel Λ-system in Rb vapor", Eur. Phys. J. D 71 (2017) 78. CrossRef H. Cheng, H. -M. Wang, S. -S. Zhang, P. -P. Xin, J. Luo and H. -P. Liu, "Electromagnetically induced transparency of 87Rb in a buffer gas cell with magnetic field", J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 095401. CrossRef C. Mishra, A. Chakraborty, A. Srivastava, S. K. Tiwari, S. P. Ram, V. B. Tiwari and S. R. Mishr, "lectromagnetically induced transparency in Λ-systems of 87Rb atom in magnetic field", J. Mod. Opt. 65 (2018) 2269-2277. CrossRef S. H. Asadpour, H. R. Hamedi and H. R. Soleimani, "Slow light propagation and bistable switching in a graphene under an external magnetic field", Laser Phys. Lett. 12 (2015) 045202. CrossRef R. Karimi, S. H. Asadpour, S. Batebi and h. R. Soleimani, "Manipulation of pulse propagation in a four-level quantum system via an elliptically polarized light in the presence of external magnetic field", Mod. Phys. Lett. B 29 (2015) 1550185. CrossRef


2021 ◽  
Author(s):  
Zeeshan Ali Safdar Jadoon ◽  
Heung-Ryoul Noh ◽  
Jin-Tae Kim

Abstract Optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of 85Rb D2 transition that involves the Doppler broadening effect are solved herein. The calculated spectra agree well with the experimental results obtained using the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open Fg = 3 → Fe = 2 and 3 transitions (open Fg = 2 → Fe = 2 and 3 transitions) are clearly determined to be the effect of the strong closed Fg = 3 → Fe = 4 transition line (strong closed Fg = 2 → Fe = 1 transition line) based on the comparisons of the calculated absorption profiles of a DTLS without neighboring states and those of all levels with neighboring states depending on the coupling and probe power ratios. The crucial factors established based on comparisons of the calculated absorption profiles of DTLS with and without neighboring states, which enhance or reduce coherence effects and result in transformation between electromagnetically induced absorption and electromagnetically induced transparency, are the power ratios between coupling and probe beams, openness of the excited state, and effects of the neighboring states due to the Doppler broadening in a real atomic system.


Sign in / Sign up

Export Citation Format

Share Document