scholarly journals Hjorth features and k-nearest neighbors algorithm for visual imagery classification

Author(s):  
Fabio Ricardo Llorella Costa ◽  
Gustavo Patow

Abstract Visual imagery is an interesting paradigm for use in Brain-Computer Interface systems. Through visual imagery we can extend the potential of BCI systems beyond motor imagery or evoked potentials. In this work we have studied the possibility of classifying different visual imagery shapes in the time domain using EEG signals, with the Hjorth parameters and k-nearest neighbors classifier 69% accuracy has been obtained with a Cohen's kappa value of 0.64 in the classification of seven geometric shapes, obtaining results superior to other related works.

2019 ◽  
Vol 9 (23) ◽  
pp. 4990 ◽  
Author(s):  
Jusas ◽  
Samuvel

The essential task of a Brain-Computer Interface (BCI) is to extract the motor imagery features from Electro-Encephalogram (EEG) signals for classifying the thought process. It is necessary to analyse these obtained signals in both the time domain and frequency domains. It is observed that the combination of multiple algorithms increases the performance of the feature extraction process. This paper identifies combinations that have not been attempted previously and improves the accuracy of the overall process, although other authors implemented different combinations of the techniques. The focus is given more on the feature extraction process and frequency bands, which are user-specific and subject-specific frequency bands. In both time and frequency domains, after analysing EEG signals with the time domain parameter, we select the frequency band and the timing while using the Fisher ratio of the time domain parameter (TDP). We used Fisher discriminant analysis (FDA)-type F-score to simultaneously select the frequency band and time segment for multi-class classification. We extracted subject-specific TDP features from the training trials to train the classifier when optimal time-frequency areas were selected for each subject. In this paper, various methods are explored for obtaining the features, which are Time Domain Parameters (TDP), Fast Fourier Transform (FFT), Principal Component Analysis (PCA), R2, Fast Correlation Based Filter (FCBF), Empirical Mode Decomposition (EMD), and Intrinsic time-scale decomposition (ITD). After the extraction process, PCA is used for dimensionality reduction. An efficient result was obtained with the combination of TDP, FFT, and PCA. We used the multi-class Fisher′s linear discriminant analysis (LDA) as the classifier, which was in line with the FDA-type F-score. It is observed that the combination of feature extraction techniques to the frequency bands that were selected by the Fisher ratio and FDA type F-score along with Fisher′s LDA classifier had higher accuracy than the results obtained other researches. A kappa coefficient accuracy of 0.64 is obtained for the proposed technique. Our method leads to better classification performance when compared to state-of-the-art methods. The novelty of the approach is based on the combination of frequency bands and two feature extraction methods.


Author(s):  
Subrota Mazumdar ◽  
Rohit Chaudhary ◽  
Suruchi Suruchi ◽  
Suman Mohanty ◽  
Divya Kumari ◽  
...  

In this chapter, a nearest neighbor (k-NN)-based method for efficient classification of motor imagery using EEG for brain-computer interfacing (BCI) applications has been proposed. Electroencephalogram (EEG) signals are obtained from multiple channels from brain. These EEG signals are taken as input features and given to the k-NN-based classifier to classify motor imagery. More specifically, the chapter gives an outline of the Berlin brain-computer interface that can be operated with minimal subject change. All the design and simulation works are carried out with MATLAB software. k-NN-based classifier is trained with data from continuous signals of EEG channels. After the network is trained, it is tested with various test cases. Performance of the network is checked in terms of percentage accuracy, which is found to be 99.25%. The result suggested that the proposed method is accurate for BCI applications.


Author(s):  
Izabela Rejer

The crucial problem that has to be solved when designing an effective brain–computer interface (BCI) is: how to reduce the huge space of features extracted from raw electroencephalography (EEG) signals. One of the strategies for feature selection that is often applied by BCI researchers is based on genetic algorithms (GAs). The two types of GAs that are most commonly used in BCI research are the classic algorithm and the Culling algorithm. This paper presents both algorithms and their application for selecting features crucial for the correct classification of EEG signals recorded during imagery movements of the left and right hand. The results returned by both algorithms are compared to those returned by an algorithm with aggressive mutation and an algorithm with melting individuals, both of which have been proposed by the author of this paper. While the aggressive mutation algorithm has been published previously, the melting individuals algorithm is presented here for the first time.


2018 ◽  
Vol 8 (4) ◽  
pp. 3093-3097 ◽  
Author(s):  
K. D. Tzimourta ◽  
L. G. Astrakas ◽  
A. M. Gianni ◽  
A. T. Tzallas ◽  
N. Giannakeas ◽  
...  

The complexity of epilepsy created a fertile ground for further research in automated methods, attempting to help the epileptologists’ task. Over the past years, great breakthroughs have emerged in computer-aided analysis and the advent of Brain Computer Interface (BCI) systems has greatly facilitated the automated seizure analysis. In this study, an evaluation of the window size in automated seizure detection is proposed. The EEG signals from the University of Bonn was employed and segmented into 24 epochs of different window lengths with 50% overlap each time. Statistical and spectral features were extracted in the OpenViBE scenario that were used to train four different classifiers. Results in terms of accuracy were above 80% for the Decision Trees classifier. Also, results indicated that different window sizes provide small variations in classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document