scholarly journals Clusters Formed by Dumbbell-like One-Patch Particles Confined in Thin Systems

Author(s):  
Masahide Sato

Abstract Performing isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model. The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between them. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when q < 1. With increasing q, the clusters become chain-like. When q increases further, elongated clusters and regular polygonal clusters are created. In hte simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahide Sato

AbstractPerforming isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model . The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between these centers. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when $$q<1$$ q < 1 . With increasing q, the clusters become chain-like . When q increases further, elongated clusters and regular polygonal clusters are created. In the simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.


1991 ◽  
Vol 46 (4) ◽  
pp. 351-356
Author(s):  
Bernd M. Rode

Abstract Monte Carlo simulations of a system of 200 water and 24 NaCl molecules at 6 different densities in the range from 0.003 g/cm3 to 0.999 g,/cm3 and T = 125 °C and 225 CC were performed to obtain some insight into cluster formation which should precede and determine the formation of aerosol structures and has possibly played some role in prebiotic atmosphere chemistry. Solute hydration occurs already at very low concentrations mainly in the form of hydrated molecules ("contact ion pairs"). At higher densities larger cluster structures are observed, leading rather continuously to the structure of the supersaturated 7.1 M NaCl solution at the same temperature. Radial distribution functions, coordination numbers and particle interaction energies are discussed with respect to the simulation parameters density and temperature


2018 ◽  
Vol 615 ◽  
pp. A62 ◽  
Author(s):  
G. Valle ◽  
M. Dell’Omodarme ◽  
P. G. Prada Moroni ◽  
S. Degl’Innocenti

Aims. The capability of grid-based techniques to estimate the age together with the convective core overshooting efficiency of stars in detached eclipsing binary systems for main sequence stars has previously been investigated. We have extended this investigation to later evolutionary stages and have evaluated the bias and variability on the recovered age and convective core overshooting parameter accounting for both observational and internal uncertainties. Methods. We considered synthetic binary systems, whose age and overshooting efficiency should be recovered by applying the SCEPtER pipeline to the same grid of models used to build the mock stars. We focus our attention on a binary system composed of a 2.50 M⊙ primary star coupled with a 2.38 M⊙ secondary. To explore different evolutionary scenarios, we performed the estimation at three different times: when the primary is at the end of the central helium burning, when it is at the bottom of the RGB, and when it is in the helium core burning phase. The Monte Carlo simulations have been carried out for two typical values of accuracy on the mass determination, that is, 1% and 0.1%. Results. Adopting typical observational uncertainties, we found that the recovered age and overshooting efficiency are biased towards low values in all three scenarios. For an uncertainty on the masses of 1%, the underestimation is particularly relevant for a primary in the central helium burning stage, reaching − 8.5% in age and − 0.04 (− 25% relative error) in the overshooting parameter β. In the other scenarios, an undervaluation of the age by about 4% occurs. A large variability in the fitted values between Monte Carlo simulations was found: for an individual system calibration, the value of the overshooting parameter can vary from β = 0.0 to β = 0.26. When adopting a 0.1% error on the masses, the biases remain nearly unchanged but the global variability is suppressed by a factor of about two. We also explored the effect of a systematic discrepancy between the artificial systems and the model grid by accounting for an offset in the effective temperature of the stars by ± 150 K. For a mass error of 1% the overshooting parameter is largely biased towards the edges of the explored range, while for the lower mass uncertainty it is basically unconstrained from 0.0 to 0.2. We also evaluate the possibility of individually recovering the β value for both binary stars. We found that this is impossible for a primary near to central hydrogen exhaustion owing to huge biases for the primary star of + 0.14 (90% relative error), while in the other cases the fitted β are consistent, but always biased by about − 0.04 (− 25% relative error). Finally, the possibility to distinguish between models computed with mild overshooting from models with no overshooting was evaluated, resulting in a reassuring power of distinction greater than 80%. However, the scenario with a primary in the central helium burning was a notable exception, showing a power of distinction lower than 5%.


2012 ◽  
Vol 190 ◽  
pp. 39-42
Author(s):  
M. Medvedeva ◽  
Pavel V. Prudnikov

The dynamic critical behavior of the three-dimensional Heisenberg model with longrangecorrelated disorder was studied by using short-time Monte Carlo simulations at criticality.The static and dynamic critical exponents are determined. The simulation was performed fromordered initial state. The obtained values of the exponents are in a good agreement with resultsof the field-theoretic description of the critical behavior of this model in the two-loopapproximation.


1996 ◽  
Vol 181 (2) ◽  
pp. 422-428 ◽  
Author(s):  
Akira Satoh ◽  
Roy W. Chantrell ◽  
Shin-Ichi Kamiyama ◽  
Geoff N. Coverdale

1999 ◽  
Vol 32 (5) ◽  
pp. 917-923 ◽  
Author(s):  
Bo Sjöberg

Computer simulations using Monte Carlo methods are used to investigate the effects of interparticle correlations on small-angle X-ray and neutron scattering from moderate or highly concentrated systems of ellipsoids of revolution. Both oblate and prolate ellipsoids, of varying eccentricities and concentrations, are considered. The advantage with Monte Carlo simulation is that completely general models, both regarding particle shapes and interaction potentials, can be considered. Equations are also given that relate the nonideal part of the chemical potential, βμni, with the scattering at zero angle,I(0), and the compressibility factor,z. The quantity βμnican be obtained during the Monte Carlo simulations by using Widom's test-particle method. For spherical particles, the simulations are compared with approximation formulas based on the Percus–Yevick equation. A method is also suggested for the calculation of both βμniandzfrom experimental values ofI(0) recorded as a function of concentration.


Sign in / Sign up

Export Citation Format

Share Document