scholarly journals Regulating control of in-pipe intelligent isolation plugging tool based on adaptive dynamic programming

Author(s):  
Xingyuan Miao ◽  
Hong Zhao

Abstract In-pipe intelligent isolation plugging tools (IPTs) are crucial in pipeline maintenance. During the plugging process, the flow field around the IPT changes drastically, resulting in vibration and instability of the plugging process. Therefore, three foldable spoilers were designed at the tail of the IPT to reduce the vibration of the IPT. First, a disturbing flow experiment of IPT with spoilers was designed. A mathematical model of the pneumatic spoiler control system was established to regulate the spoiler angles. Second, based on the experimental data, a Bi-LSTM (bidirectional long short-term memory) neural network predictor between the plugging states, the spoiler angles, and the pressure gradient was established. Then, an adaptive dynamic programming controller was designed to select the optimal control action for each plugging state, thereby reducing the pressure gradient. Finally, Python and Matlab/Simulink were used for simulation. The results showed that the controller could reduce the pressure gradient during the plugging process by an average of 25.94%, which alleviated the vibration of the IPT and achieved a smooth plugging operation.

2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

2021 ◽  
Vol 11 (14) ◽  
pp. 6625
Author(s):  
Yan Su ◽  
Kailiang Weng ◽  
Chuan Lin ◽  
Zeqin Chen

An accurate dam deformation prediction model is vital to a dam safety monitoring system, as it helps assess and manage dam risks. Most traditional dam deformation prediction algorithms ignore the interpretation and evaluation of variables and lack qualitative measures. This paper proposes a data processing framework that uses a long short-term memory (LSTM) model coupled with an attention mechanism to predict the deformation response of a dam structure. First, the random forest (RF) model is introduced to assess the relative importance of impact factors and screen input variables. Secondly, the density-based spatial clustering of applications with noise (DBSCAN) method is used to identify and filter the equipment based abnormal values to reduce the random error in the measurements. Finally, the coupled model is used to focus on important factors in the time dimension in order to obtain more accurate nonlinear prediction results. The results of the case study show that, of all tested methods, the proposed coupled method performed best. In addition, it was found that temperature and water level both have significant impacts on dam deformation and can serve as reliable metrics for dam management.


Sign in / Sign up

Export Citation Format

Share Document