scholarly journals In Vivo Evaluation of Nanostructured Lipid Carrier Systems (NLCs) in Mice Bearing Prostate Cancer Tumours

Author(s):  
Mushfiq Akanda ◽  
Giulia Getti ◽  
Dennis Douroumis

Abstract Nanostructure lipid carriers (NLCs) were developed for the delivery of curmumin (CRN), a potent anticancer agent with low bioavailability, for the treatment of prostate cancer. NLCs prepared using High Pressure Homogenization (HPH) with around 150 nm particle size, -40V ζ-potential and excellent long-term stability. Cellular uptake of CRN-SLN, showed nanoparticle localization in the cytoplasm around the nucleus. CRN-NLCs were assessed using flow cytometry and found to cause early and late apoptotic events at 100 μg/ml CRN concentrations. CRN-NLC nanoparticles were administrated to nude mice with LNCaP prostate cancer xenografts and demonstrated substantial tumour volume suppression (40%) with no weight loss compared to pure CRN (ethanolic solution). Overall, NLCs were proved a suitable carrier for passive drug delivery and cancer treatment.

Author(s):  
Mushfiq Akanda ◽  
Giulia Getti ◽  
Dennis Douroumis

AbstractNanostructure lipid carriers (NLCs) were developed for the delivery of curmumin (CRN), a potent anticancer agent with low bioavailability, for the treatment of prostate cancer. NLCs prepared using high pressure homogenization (HPH) with around 150 nm particle size, − 40 V ζ-potential and excellent long-term stability. Cellular uptake of CRN-SLN showed nanoparticle localization in the cytoplasm around the nucleus. CRN-NLCs were assessed using flow cytometry and found to cause early and late apoptotic events at 100 μg/ml CRN concentrations. CRN-NLC nanoparticles were administrated to nude mice with LNCaP prostate cancer xenografts and demonstrated substantial tumour volume suppression (40%) with no weight loss compared to pure CRN (ethanolic solution). Overall, NLCs were proved a suitable carrier for passive drug delivery and cancer treatment. Graphical abstract


2000 ◽  
Vol 122 (3) ◽  
pp. 231-235 ◽  
Author(s):  
Damien Laude ◽  
Kevin Odlum ◽  
Stewart Rudnicki ◽  
Nathaniel Bachrach

We present here a unique engineered collagen formulation that is injectable and compacts into a porous viscoelastic solid after implantation, achieving completely focal application without cross-linking. This implant provides a cohesive continuously porous matrix, as demonstrated by permeability and compression experiments. Those experiments also provide initial mechanical characterization of the material and establish the ability to modify these essential properties by design. Further, the short-term compaction and long-term stability of the implant in vivo in terms of both physical and histological responses are assessed in an animal model to demonstrate the mechanism of action and long-term persistence of this novel material. [S0148-0731(00)00403-9]


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


ASAIO Journal ◽  
1996 ◽  
Vol 42 (2) ◽  
pp. 38
Author(s):  
Y. Wakisaka ◽  
Y. Taenaka ◽  
E. Tatsumi ◽  
T. Nishimura ◽  
T. Masuzawa ◽  
...  

2005 ◽  
Vol 3 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Renata Filkorn-Kaiser ◽  
Konrad Botzenhart ◽  
Albrecht Wiedenmann

A recently described quantitative rapid cycle real time PCR (LightCycler™) assay detects Cryptosporidium parvum after in vitro excystation, which is a surrogate marker for the viability of the organisms. In the original assay the quantification standard is a dilution series of C. parvum oocysts with a microscopically determined excystation rate. The need to keep suspensions of viable oocysts in stock and to continuously monitor their excystation rate, however, renders the assay impracticable for routine application. A synthetic standard was developed to replace the in vivo standard and was calibrated using oocysts with known excystation rates. The standard consists of a 486 bp DNA segment ranging from 229 bp upstream to 79 bp downstream of the actual PCR target site. Aliquots of the standard were frozen and stored at −20 °C and at −70 °C or lyophilised and stored at room temperature in the dark. For a period of one year samples preserved with each of the three methods were restored every four or five weeks. They were amplified in the LightCycler™ and the crossing points (CP) were monitored. No significant trend in the raw CP values could be observed for any of the three storage methods. However, when the methods were compared to each other by calculating the CP ratios (−20 °C/−70 °C; −20 °C/lyophilised; −70 °C/lyophilised) at the 10 monitoring dates, the CP ratios −20 °C/−70 °C and −20 °C/lyophilised showed a highly significant positive trend (p<0.0001) while the CP ratio −70 °C/lyophilised did not differ from the null hypothesis (p=0.53). It can be concluded that the latter two preservation methods are both appropriate, while storage at −20 °C is less advisable. Calculations based on the molecular weight of the standard and on the assumption of an average yield of three sporozoites per oocyst led to the conclusion that the target sequence is probably located on a double copy gene


Sign in / Sign up

Export Citation Format

Share Document