scholarly journals Enzymatic Synthesis of Cellulose in Space: Gravity Is a Crucial Factor for Building Cellulose II Gel Structure

Author(s):  
Tomohiro Kuga ◽  
Naoki Sunagawa ◽  
Kiyohiko Igrashi

Abstract We previously reported in vitro synthesis of highly ordered crystalline cellulose II by reverse reaction of cellodextrin phosphorylase from the cellulolytic bacterium Clostridium ( Hungateiclostridium ) thermocellum ( Ct CDP), but the formation mechanism of the cellulose crystals and highly ordered structure has long been unclear. Considering the specific density of cellulose versus water, the formation of crystalline and highly ordered structure in an aqueous solution should be affected by gravity. Thus, we synthesized cellulose with Ct CDP at the International Space Station, where sedimentation and convection due to gravity are negligible. Optical microscopic observation suggested that cellulose in space has a gel-like appearance without apparent aggregation, in contrast to cellulose synthesized on the ground. Small-angle Xray scattering (SAXS) and wide-angle X-ray scattering (WAXS) indicated that cellulose synthesized in space has a more uniform particle distribution in the ~100 nm scale region than cellulose synthesized on the ground. Scanning electron microscopy (SEM) showed that both celluloses have a micrometer scale network structure, whereas a fine fiber network was constructed only under microgravity. These results indicate that gravity plays a role in cellulose II crystal sedimentation and the building of network structure, and synthesis in space could play a role in the design of unique materials.

2009 ◽  
Vol 102 (12) ◽  
pp. 1169-1175 ◽  
Author(s):  
Kathryn Gersh ◽  
Chandrasekaran Nagaswami ◽  
John Weisel

SummaryAlthough many in vitro fibrin studies are performed with plasma, in vivo clots and thrombi contain erythrocytes, or red blood cells (RBCs).To determine the effects of RBCs on fibrin clot structure and mechanical properties, we compared plasma clots without RBCs to those prepared with low (2 vol%), intermediate (5-10 vol%), or high (≥20 vol%) numbers of RBCs. By confocal microscopy, we found that low RBC concentrations had little effect on clot structure. Intermediate RBC concentrations caused heterogeneity in the fiber network with pockets of densely packed fibers alongside regions with few fibers. With high levels of RBCs, fibers arranged more uniformly but loosely around the cells. Scanning electron micrographs demonstrated an uneven distribution of RBCs throughout the clot and a significant increase in fiber diameter upon RBC incorporation. While permeability was not affected by RBC addition, at 20% or higher RBCs, the ratio of viscous modulus (G′′) to elastic modulus (G′) increased significantly over that of a clot without any RBCs. RBCs triggered variability in the fibrin network structure, individual fiber characteristics, and overall clot viscoelasticity compared to the absence of cells. These results are important for understanding in vivo clots and thrombi.


2020 ◽  
Vol 21 (10) ◽  
pp. 4355-4364
Author(s):  
Robert Pylkkänen ◽  
Pezhman Mohammadi ◽  
Suvi Arola ◽  
Jorg C. de Ruijter ◽  
Naoki Sunagawa ◽  
...  

2020 ◽  
Vol 15 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Vikas Jhawat ◽  
Gandhi Sivaraman ◽  
Om Prakash Sunnapu ◽  
Ramya Krishna Nakkala ◽  
...  

Background: Venlafaxine HCl is a selective serotonin reuptake inhibitor which is given in the treatment of depression. The delivery of the drug at a controlled rate can be of great importance for prolonged effect. Objective: The objective was to prepare and optimize the controlled release core in cup matrix tablet of venlafaxine HCl using the combination of hydrophilic and hydrophobic polymers to prolong the effect with rate controlled drug release. Methods: The controlled release core in cup matrix tablets of venlafaxine HCl were prepared using HPMC K5, K4, K15, HCO, IPA, aerosol, magnesium sterate, hydrogenated castor oil and micro crystalline cellulose PVOK-900 using wet granulation technique. Total ten formulations with varying concentrations of polymers were prepared and evaluated for different physicochemical parameters such FTIR analysis for drug identification, In-vitro drug dissolution study was performed to evaluate the amount of drug release in 24 hrs, drug release kinetics study was performed to fit the data in zero order, first order, Hixson–crowell and Higuchi equation to determine the mechanism of drug release and stability studies for 3 months as observed. Results: The results of hardness, thickness, weight variation, friability and drug content study were in acceptable range for all formulations. Based on the In vitro dissolution profile, formulation F-9 was considered to be the optimized extending the release of 98.32% of drug up to 24 hrs. The data fitting study showed that the optimized formulation followed the zero order release rate kinetics and also compared with innovator product (flavix XR) showed better drug release profile. Conclusion: The core-in-cup technology has a potential to control the release rate of freely water soluble drugs for single administration per day by optimization with combined use of hydrophilic and hydrophobic polymers.


2005 ◽  
Vol 32 (4) ◽  
pp. 294-299 ◽  
Author(s):  
Dieter Hoffmann ◽  
Bernd Buchberger ◽  
Cordula Nemetz

Sign in / Sign up

Export Citation Format

Share Document