hydrophobic polymers
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 57)

H-INDEX

23
(FIVE YEARS 3)

RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1310-1318
Author(s):  
Kotoe Ichihashi ◽  
Masakazu Umezawa ◽  
Yuichi Ueya ◽  
Kyohei Okubo ◽  
Eiji Takamoto ◽  
...  

The enantiomeric structure of PLA affects its affinity for OTN-NIR fluorescent IR-1061 dye and its robustness when forming hydrophobic core micelles.


2021 ◽  
Vol 16 (3) ◽  
pp. 916-927
Author(s):  
Amit Saha Roy

One of the oldest habits of human beings is chewing gum. It has continued from ancient civilizations to the current time. Gum chewing provides a relaxing experience that individuals enjoy for a long time. The non-food item, chewing gum, has a long history. The gradual progression of its development has provided us with a greater flavour as well as extra medicinal properties. Chewing gum is known for its stress-relieving qualities as well as its ability to keep our mouths fresh. Soon, ‘chewing gum’ will be included as part of the drug delivery mechanism. Unfortunately, it has had some negative consequences. Modern chewing gum is made of non-biodegradable hydrophobic polymers together with artificial sweeteners and flavours. So, chewing this sort of synthetic material over a long time could produce some adverse effects. After chewing, most individuals throw the waste part of chewing gum everywhere, resulting in environmental trash known as 'gum pollution. Each year, chewing gum generates more than 105 tonnes of "plastic" garbage. Thus, the discarded non-biodegradable residue of the gum produces plastic pollution. Every year, enormous sums of money are spent to clean up the abandoned gum from the streets. Again, it has a high potential to trap bacteria inside. Therefore, this widespread habit causes an additional nuisance in this pandemic situation. As a result, the waste part of the gum has multiple dimensions to pollute our environment. Gum disposal has become a major problem all across the world. Gum litter can only be reduced by properly disposing of gum. As a result, it's time to reconsider the role of chewing gum in terms of human health and the environment. This article emphasizes the importance of proper waste (gum) disposal and calls for increased awareness to safeguard our environment from "gum pollution."


Author(s):  
Khatereh Azizi ◽  
Alessandro Laio ◽  
Ali Hassanali
Keyword(s):  

2021 ◽  
Author(s):  
Hanie Yousefi ◽  
Amid Shakeri ◽  
Samer Kullab ◽  
Dalya Al-Mfarej ◽  
Martin Rottman ◽  
...  

Abstract Cross-contamination of biological samples during handling and preparation, is a major issue in laboratory setups, leading to false-positives or false-negatives. Sample carryover residue in pipette tips contributes greatly to this issue. Most pipette tips on the market are manufactured with hydrophobic polymers that are able to repel high surface tension liquids, yet they lack in performance when low surface tension liquids are involved. This presents an obstacle for pipette tips as inaccuracies and loss in precision arise when low surface tension liquids such as viscous oils are pipetted. Here we propose the use of lubricant-infused surface (LIS) technology to achieve omniphobic properties in pipette tips. Using a versatile and simple design, the inner lumen of commercially available pipette tips was coated with a fluorosilane (FS) layer using chemical vapor deposition (CVD). We show that after lubricating the tips through simply pipetting up and down a fluorinated lubricant, the surface free energy of the tips drastically decreased enabling them to attain low retention properties. Contact angle measurements reveals that the treated pipette tips have enhanced omniphobic properties. The repellent behavior of the lubricant-infused pipette tips against physical adsorption is investigated through pipetting a food coloring dye as well as human blood samples and are compared to the untreated tips. The results show significantly less amount carryover residue when the lubricant-infused tips are utilized compared to commercially available ones.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1936
Author(s):  
Benjamin P. Brookbank ◽  
Jasmin Patel ◽  
Sonia Gazzarrini ◽  
Eiji Nambara

Abscisic acid (ABA) regulates various aspects of plant physiology, including promoting seed dormancy and adaptive responses to abiotic and biotic stresses. In addition, ABA plays an im-portant role in growth and development under non-stressed conditions. This review summarizes phenotypes of ABA biosynthesis and signaling mutants to clarify the roles of basal ABA in growth and development. The promotive and inhibitive actions of ABA in growth are characterized by stunted and enhanced growth of ABA-deficient and insensitive mutants, respectively. Growth regulation by ABA is both promotive and inhibitive, depending on the context, such as concentrations, tissues, and environmental conditions. Basal ABA regulates local growth including hyponastic growth, skotomorphogenesis and lateral root growth. At the cellular level, basal ABA is essential for proper chloroplast biogenesis, central metabolism, and expression of cell-cycle genes. Basal ABA also regulates epidermis development in the shoot, by inhibiting stomatal development, and deposition of hydrophobic polymers like a cuticular wax layer covering the leaf surface. In the root, basal ABA is involved in xylem differentiation and suberization of the endodermis. Hormone crosstalk plays key roles in growth and developmental processes regulated by ABA. Phenotypes of ABA-deficient and insensitive mutants indicate prominent functions of basal ABA in plant growth and development.


2021 ◽  
Vol 5 (11) ◽  
pp. 300
Author(s):  
O. H. P. Gunawardene ◽  
Chamila A. Gunathilake ◽  
A. P. S. M. Amaraweera ◽  
N. M. L. Fernando ◽  
W. M. D. B. Wanninayaka ◽  
...  

The health and environmental concerns of the usage of non-biodegradable plastics have driven efforts to explore replacing them with renewable polymers. Although starch is a vital renewable polymer, poor water resistivity and thermo-mechanical properties have limited its applications. Recently, starch/synthetic biodegradable polymer blends have captured greater attention to replace inert plastic materials; the question of ‘immiscibility’ arises during the blend preparation due to the mixing of hydrophilic starch with hydrophobic polymers. The immiscibility issue between starch and synthetic polymers impacts the water absorption, thermo-mechanical properties, and chemical stability demanded by various engineering applications. Numerous studies have been carried out to eliminate the immiscibility issues of the different components in the polymer blends while enhancing the thermo-mechanical properties. Incorporating compatibilizers into the blend mixtures has significantly reduced the particle sizes of the dispersed phase while improving the interfacial adhesion between the starch and synthetic biodegradable polymer, leading to fine and homogeneous structures. Thus, Significant improvements in thermo-mechanical and barrier properties and water resistance can be observed in the compatibilized blends. This review provides an extensive discussion on the compatibilization processes of starch and petroleum-based polymer blends.


Author(s):  
RITU RANI ◽  
TARANJIT KAUR ◽  
AJEET PAL SINGH ◽  
AMAR PAL SINGH

Objective: To prepare Transdermal patches of Moronic acid along with various polymers for controlled release action. Methods: Suitable method such as Solvent Casting Technique of Film Casting Technique are used for the preparation of Transdermal patch. Results: The prepared Transdermal patches were transparent, smooth, uniform and flexible. The method adopted for the preparation of the system was found satisfactory. Conclusion: Various formulations were developed by using hydrophilic and hydrophobic polymers like HPMC E5 and EC respectively in single and combinations by solvent evaporation technique with the incorporation of penetration enhancer such as dimethylsulfoxide and dibutyl phthalate as plasticizer. Formulation F7 containing an equal ratio of HPMC E5: EC (5:5) showed maximum and sustained release of 86.814±0.262 within 24 h. Kinetic models were used to confirm the release mechanism of the formulations. Moronic acid release from the patches F1 to F7 followed non Fickian diffusion rate controlled mechanism.


2021 ◽  
Vol 2021 ◽  
pp. 74-80
Author(s):  
A. Haji ◽  
M. Khajeh Mehrizi ◽  
M. Ali Tavanai ◽  
M. Gohari

Water-repellent textiles are usually prepared by application of hydrophobic polymers such as fluorocarbons on fabrics using padding or spraying methods followed by drying and curing steps. These procedures impart hydrophobicity to the fabric, but harm the physical and handle properties of the fabric. In this study, low-pressure plasma was employed for the polymerization of 1H,1H,2H,2H-Perfluorooctyl acrylate on PET/Wool fabric for obtaining water-repellent properties with minimum effect on other desirable properties. To compare the results with the conventional industrial processes, a sample was treated with a commercial water-repellent agent using pad-dry-cure method. The water contact angle, bending length, tensile strength, air permeability, and surface morphology of the samples were compared. The plasma-treated sample showed similar water contact angle and higher fastness properties compared with the sample prepared by the conventional method. The tensile strength of the samples was similar, while the air permeability of the plasmatreated sample was higher and the coating was more uniform compared with the sample prepared by the paddry- cure method.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3407
Author(s):  
Colin P. Gibson ◽  
Matthew A. Litwinowicz ◽  
James P. Tellam ◽  
Rebecca J. L. Welbourn ◽  
Maximilian W. A. Skoda ◽  
...  

Water-soluble nonionic surfactant, pentaethylene glycol monododecyl ether, C12E5, spontaneously blooms to the surface of spin-cast hydrophobic polyisoprenes, generating hydrophilic surfaces. This system provides a simple model for hydrophilic chemical modification of rubbery polymers that demonstrates surprisingly rich, complex, and unexpected behaviour. The vertical depth profiles were quantified using neutron reflectometry (NR) using a novel procedure to account for undulations in the film thickness. Surface properties were characterized using contact angle analysis and atomic force microscopy (AFM). Despite the low surface tension of the toluene solvent used in film preparation and the low surface energy of the polyisoprene (PI) matrix, NR depth profiles revealed clear evidence of surfactant segregation. This surface layer was typically thicker than a monolayer, but incomplete, yet was remarkably stable with respect to dissolution, even when exposed to hundreds of thousands of times the volume of water required to dissolve all the surfactant on the surface. Despite the apparent resistance to removal from the surface, water exposure does alter the subsequent wettability of the surface, with a hydrophilic-to-hydrophobic transition occurring after rinsing. Complementary AFM images of these C12E5/cis-PI films showed unexpected strand-like features on the surface of the film, which we attribute to a non-uniform lateral distribution of some of the surfactant. This surface structure becomes more evident after rinsing, and it appears that there are two distinct populations of surfactant on the PI film surface. We conclude that some of the bloomed surfactant exists as layers, which are relatively inert with respect to rinsing or surface modification, and some is laterally inhomogeneous. This latter population is primarily responsible for surface wetting behaviour but is not detected by specular NR.


2021 ◽  
Vol 12 (4) ◽  
pp. 55
Author(s):  
Mariia Gordienko ◽  
Elena Karakatenko ◽  
Natalia Menshutina ◽  
Marina Koroleva ◽  
Ilmira Gilmutdinova ◽  
...  

The creation of artificial biocomposites consisting of biocompatible materials in combination with bioactive molecules is one of the main tasks of tissue engineering. The development of new materials, which are biocompatible, functional, and also biodegradable in vivo, is a specific problem. Two types of products can be formed from these materials in the processes of biodegradation. The first types of substances are natural for a living organism and are included in the metabolism of cells, for example, sugars, lactic, glycolic, and β-hydroxybutyric acids. Substances that are not metabolized by cells represent the other type. In the latter case, such products should not be toxic, and their concentration when entering the bloodstream should not exceed the established maximum permissible level. The composite materials based on a mixture of biodegradable synthetic and natural polymers with the addition of hydroxyapatite nanoparticles, which acts as a stabilizer of the dispersed system during production of the composite, and which is a biologically active component of the resulting matrix, were obtained and studied. The indirect effect of the shape, size, and surface charge of hydroxyapatite nanoparticles on the structure and porosity of the formed matrix was shown. An in vivo study showed the absence of acute toxicity of the developed composites.


Sign in / Sign up

Export Citation Format

Share Document