cellulolytic bacterium
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 18)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
Lijuan Gao ◽  
Yaru Su ◽  
Wenxia Song ◽  
Weican Zhang ◽  
Qingsheng Qi ◽  
...  

Cytophaga hutchinsonii is an abundant soil cellulolytic bacterium that uses a unique cellulose degradation mechanism different from those that involve free cellulases or cellulosomes. Though several proteins were identified to be important for cellulose degradation, the mechanism used by C. hutchinsonii to digest crystalline cellulose remains a mystery. In this study, chu_0922 was identified by insertional mutation and gene deletion as an important gene locus indispensable for crystalline cellulose utilization. Deletion of chu_0922 resulted in defect in crystalline cellulose utilization. The Δ 0922 mutant completely lost the ability to grow on crystalline cellulose even with extended incubation, and selectively utilized the amorphous region of cellulose leading to the increased crystallinity. As a protein secreted by the type Ⅸ secretion system (T9SS), CHU_0922 was found to be located on the outer membrane, and the outer membrane localization of CHU_0922 relied on the T9SS. Comparative analysis of the outer membrane proteins revealed that the abundance of several cellulose binding proteins, including CHU_1276, CHU_1277, and CHU_1279, was reduced in the Δ 0922 mutant. Further study showed that CHU_0922 is crucial for the full expression of the gene cluster containing chu_1276 , chu_1277 , chu_1278 , chu_1279 , and chu_1280 ( cel9C ), which is essential for cellulose utilization. Moreover, CHU_0922 is required for the cell surface localization of CHU_3220, a cellulose binding protein that is essential for crystalline cellulose utilization. Our study provides insights into the complex system that C. hutchinsonii uses to degrade crystalline cellulose. IMPORTANCE The widespread aerobic cellulolytic bacterium Cytophaga hutchinsonii , belonging to the phylum Bacteroidetes , utilizes a novel mechanism to degrade crystalline cellulose. No genes encoding proteins specialized in loosening or disruption the crystalline structure of cellulose were identified in the genome of C. hutchinsonii , except for chu_3220 and chu_1557 . The crystalline cellulose degradation mechanism remains enigmatic. This study identified a new gene locus, chu_0922 , encoding a typical T9SS substrate that is essential for crystalline cellulose degradation. Notably, CHU_0922 is crucial for the normal transcription of chu_1276 , chu_1277 , chu_1278 , chu_1279 , and chu_1280 ( cel9C ), which play important roles in the degradation of cellulose. Moreover, CHU_0922 participates in the cell surface localization of CHU_3220. These results demonstrated that CHU_0922 plays a key role in the crystalline cellulose degradation network. Our study will promote the uncovering of the novel cellulose utilization mechanism of C. hutchinsonii.


2021 ◽  
Author(s):  
Tomohiro Kuga ◽  
Naoki Sunagawa ◽  
Kiyohiko Igrashi

Abstract We previously reported in vitro synthesis of highly ordered crystalline cellulose II by reverse reaction of cellodextrin phosphorylase from the cellulolytic bacterium Clostridium ( Hungateiclostridium ) thermocellum ( Ct CDP), but the formation mechanism of the cellulose crystals and highly ordered structure has long been unclear. Considering the specific density of cellulose versus water, the formation of crystalline and highly ordered structure in an aqueous solution should be affected by gravity. Thus, we synthesized cellulose with Ct CDP at the International Space Station, where sedimentation and convection due to gravity are negligible. Optical microscopic observation suggested that cellulose in space has a gel-like appearance without apparent aggregation, in contrast to cellulose synthesized on the ground. Small-angle Xray scattering (SAXS) and wide-angle X-ray scattering (WAXS) indicated that cellulose synthesized in space has a more uniform particle distribution in the ~100 nm scale region than cellulose synthesized on the ground. Scanning electron microscopy (SEM) showed that both celluloses have a micrometer scale network structure, whereas a fine fiber network was constructed only under microgravity. These results indicate that gravity plays a role in cellulose II crystal sedimentation and the building of network structure, and synthesis in space could play a role in the design of unique materials.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 996
Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Chieh-Chen Huang

Plant biomass-based biofuels have gradually substituted for conventional energy sources thanks to their obvious advantages, such as renewability, huge quantity, wide availability, economic feasibility, and sustainability. However, to make use of the large amount of carbon sources stored in the plant cell wall, robust cellulolytic microorganisms are highly demanded to efficiently disintegrate the recalcitrant intertwined cellulose fibers to release fermentable sugars for microbial conversion. The Gram-positive, thermophilic, cellulolytic bacterium Clostridium thermocellum possesses a cellulolytic multienzyme complex termed the cellulosome, which has been widely considered to be nature’s finest cellulolytic machinery, fascinating scientists as an auspicious source of saccharolytic enzymes for biomass-based biofuel production. Owing to the supra-modular characteristics of the C. thermocellum cellulosome architecture, the cellulosomal components, including cohesin, dockerin, scaffoldin protein, and the plentiful cellulolytic and hemicellulolytic enzymes have been widely used for constructing artificial cellulosomes for basic studies and industrial applications. In addition, as the well-known microbial workhorses are naïve to biomass deconstruction, several research groups have sought to transform them from non-cellulolytic microbes into consolidated bioprocessing-enabling microbes. This review aims to update and discuss the current progress in these mentioned issues, point out their limitations, and suggest some future directions.


2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Parima Boontanom ◽  
Aiya Chantarasiri

Abstract. Boontanom P, Chantarasiri A. 2021. Diversity and cellulolytic activity of culturable bacteria isolated from the gut of higher termites (Odontotermes sp.) in eastern Thailand. Biodiversitas 22: 3349-3357. Cellulolytic bacteria are vital symbionts associated with the gut of all higher termites. Odontotermes termites are a higher termite widely found in Thailand. However, information concerning the diversity of cellulolytic bacteria in this termite gut remains inadequate. The aim of this study is to isolate and identify the culturable cellulolytic bacteria from the Odontotermes gut collected from eastern Thailand. The crude cellulases produced from the most active cellulolytic bacterium were further characterized. Thirty-two cellulolytic bacteria were isolated and subsequently classified by PCR-RFLP of the 16S rRNA gene. A total of 10 different RFLP patterns were obtained belonging to five bacterial genera, namely Acinetobacter, Bacillus, Citrobacter, Paenibacillus, and Serratia. The B. cereus strain TWV503 was considered to be the most active cellulolytic bacterium based on the CMC agar method. B. cereus strain TWV503 showed CMCase activity at 2.190 ± 0.063 U/mL of CMCase and 0.276 ± 0.031 U/mL of FPase. The optimum temperature and pH for CMCase activity were 50°C and the neutral pH ranging from 7.0 to 8.0, respectively. CMCase activity remained stable at up to 70°C and neutral pH ranging from 7.0 to 8.0 for 24 hours of incubation. This study revealed novel information related to cellulolytic bacteria isolated from the gut of Odontotermes termites collected from Thailand.


2021 ◽  
Vol 9 (7) ◽  
pp. 1467
Author(s):  
Yajing Liu ◽  
Sonja Vanderhaeghen ◽  
Werner Feiler ◽  
Angel Angelov ◽  
Melanie Baudrexl ◽  
...  

Arabinofuranosidases are important accessory enzymes involved in the degradation of arabinose-containing poly- and oligosaccharides. Two arabinofuranosidases from the recently described novel anaerobic cellulolytic bacterium Acetivibrio mesophilus, designated AmAraf51 and AmAraf43, were heterologously expressed in Escherichia coli and biochemically characterized. AmAraf51 not only removed arabinose moieties at O-3, O-2 and terminal O-5 positions of arabinose-containing oligosaccharides, but also exhibited exo-β-xylosidase side activity. In comparison, AmAraf43 preferably cleaved 1,3-linkages from arabinosyl disubstitutions. AmAraf51 and AmAraf43 demonstrated maximum activity at 70 °C and 57 °C, respectively. Judging from the genetic context and substrate specificity, AmAraf51 may decompose internalized arabino/xylo-oligosaccharides. The embedding of the AmAraf43 gene between genes for several putative xylanolytic enzymes, along with its enzymatic properties suggests that AmAraf43 cleaves arabinose decorations from heteroxylans extracellularly. The enzymes revealed completely converse activity profiles towards arabinan/arabinoxylan: AmAraf51 displayed strong activity on arabinan, while AmAraf43 prefers arabinoxylan. AmAraf51 dramatically stimulated the saccharification level of wheat arabinoxylan (WAX-RS) and sugar beet arabinan when administered along with xylanase M_Xyn10 or arabinanase PpAbn43, respectively. For WAX-RS degradation, the yield of arabinose and xylose was boosted 13.77-fold and 4.96-fold, respectively. The bifunctional activity, thermostability and high catalytic efficiency make AmAraf51 an interesting candidate for industrial applications.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1797
Author(s):  
Aiya Chantarasiri

Tonle Sap Lake is the largest freshwater lake in Southeast Asia, and it is regarded as one of the most biodiverse freshwater ecosystems in the world. Studies concerning aquatic cellulolytic bacteria from Tonle Sap Lake remain scarce. Cellulolytic bacteria and their cellulases play a vital role in the biogeochemical cycles of lake environments, and their application in biotechnological industries is likewise an important component of their usage. This study aimed to assess the isolation, genetic identification, bioinformatic analyses, and activity characterization of aquatic cellulolytic bacteria. The cellulolytic bacteria isolated from sedimentary water samples in the littoral zone of the lake belong to the genera Aeromonas, Bacillus, and Exiguobacterium. Several isolated aquatic bacteria were designated as rare cellulolytic microbes. Remarkably, B. mojavensis strain REP303 was initially evidenced by the aquatic cellulolytic bacterium in freshwater lake ecosystems. It was considered a highly active cellulolytic bacterium capable of creating a complete cellulase system involving endoglucanase, exoglucanase, and β-glucosidase. The encoded endoglucanase belongs to the glycosyl hydrolase family 5 (GH5), with a carboxymethylcellulase (CMCase) activity of 3.97 ± 0.05 U/mL. The optimum temperature and pH for CMCase activity were determined to be 50 °C at a pH of 7.0, with a stability range of 25–55 °C at a neutral pH of 7.0–8.0. The CMCase activity was enhanced significantly by Mn2+ and was inhibited considerably by EDTA and ethyl-acetate. In conclusion, this study is the first to report data concerning aquatic cellulolytic bacteria isolated from the littoral zone of Tonle Sap Lake. A novel strain of isolated cellulolytic B. mojavensis could be applied in various cellulose-based industries.


mSystems ◽  
2021 ◽  
Author(s):  
Ke Zhang ◽  
Weishu Zhao ◽  
Dmitry A. Rodionov ◽  
Gabriel M. Rubinstein ◽  
Diep N. Nguyen ◽  
...  

The extremely thermophilic cellulolytic bacterium, Caldicellulosiruptor bescii , degrades plant biomass at high temperatures without any pretreatments and can serve as a strategic platform for industrial applications. The metabolic engineering of C. bescii , however, faces potential bottlenecks in bio-based chemical productions.


Author(s):  
Ákos Tóth ◽  
Rózsa Máté ◽  
József Kutasi ◽  
Ildikó Bata-Vidács ◽  
Erika Tóth ◽  
...  

A novel Gram-reaction-negative bacterial strain, designated Ka43T, was isolated from agricultural soil and characterised using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows highest similarity (97.1 %) to Cellvibrio diazotrophicus E50T. Cells of strain Ka43T are aerobic, motile, short rods. The major fatty acids are summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), C18 : 1  ω7c and C16 : 0. The only isoprenoid quinone is Q-8. The polar lipid profile includes phosphatidylethanolamine, phosphatidylglycerol, four phospholipids, two lipids and an aminolipid. The assembled genome of strain Ka43T has a total length of 4.2 Mb and the DNA G+C content is 51.6 mol%. Based on phenotypic data, including chemotaxonomic characteristics and analysis of the 16S rRNA gene sequences, it was concluded that strain Ka43T represents a novel species in the genus Cellvibrio , for which the name Cellvibrio polysaccharolyticus sp. nov. is proposed. The type strain of the species is strain Ka43T (=LMG 31577T=NCAIM B.02637T).


2021 ◽  
Vol 9 (3) ◽  
pp. 593
Author(s):  
Shunsuke Ichikawa ◽  
Yoichiro Tsuge ◽  
Shuichi Karita

The cultivation of the cellulolytic bacterium, Clostridium thermocellum, can have cost-effective cellulosic biomass utilizations, such as consolidated bioprocessing, simultaneous biological enzyme production and saccharification. However, these processes require a longer cultivation term of approximately 1 week. We demonstrate that constituents of the C. thermocellum membrane vesicle fraction significantly promoted the growth rate of C. thermocellum. Similarly, cell-free Bacillus subtilis broth was able to increase C. thermocellum growth rate, while several B. subtilis single-gene deletion mutants, e.g., yxeJ, yxeH, ahpC, yxdK, iolF, decreased the growth stimulation ability. Metabolome analysis revealed signal compounds for cell–cell communication in the C. thermocellum membrane vesicle fraction (ethyl 2-decenoate, ethyl 4-decenoate, and 2-dodecenoic acid) and B. subtilis broth (nicotinamide, indole-3-carboxaldehyde, urocanic acid, nopaline, and 6-paradol). These findings suggest that the constituents in membrane vesicles from C. thermocellum and B. subtilis could promote C. thermocellum growth, leading to improved efficiency of cellulosic biomass utilization.


2021 ◽  
Vol 321 ◽  
pp. 124462
Author(s):  
Xuejiao An ◽  
Xi Chen ◽  
Yue Wang ◽  
Xinyue Zhao ◽  
Xiaoshuang Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document