scholarly journals Reactivating Hippocampal-Mediated Memories to Disrupt the Reconsolidation of Fear

Author(s):  
Stephanie Grella ◽  
Amanda Fortin ◽  
John Bladon ◽  
Leanna Reynolds ◽  
Evan Ruesch ◽  
...  

Abstract Memories are stored in the brain as cellular ensembles activated during learning and reactivated during retrieval. Using the Tet-tag system, we labeled dorsal dentate gyrus (dDG) neurons activated by positive, neutral or negative experiences with channelrhodopsin-2. Following fear-conditioning, these cells were artificially reactivated during fear memory recall. Optical stimulation of a competing positive memory was sufficient to disrupt reconsolidation, thereby reducing conditioned fear acutely and enduringly. Moreover, mice demonstrated operant responding for reactivation of a positive memory, confirming its rewarding properties. These results show that interference from a rewarding experience can counteract negative affective states. While interference induced by memory reactivation involved a relatively small set of neurons, we also found that activating a large population of randomly labeled dDG neurons was effective at disrupting reconsolidation. Importantly, reconsolidation-interference was specific to the fear memory. These findings implicate the dDG as a potential therapeutic node for modulating memories to suppress fear.

2021 ◽  
Author(s):  
Stephanie L Grella ◽  
Amanda H Fortin ◽  
John H Bladon ◽  
Leanna F Reynolds ◽  
Evan Ruesch ◽  
...  

Memories are stored in the brain as cellular ensembles activated during learning and reactivated during retrieval. Using the Tet-tag system, we labeled dorsal dentate gyrus (dDG) neurons activated by positive, neutral or negative experiences with channelrhodopsin-2. Following fear-conditioning, these cells were artificially reactivated during fear memory recall. Optical stimulation of a competing positive memory was sufficient to disrupt reconsolidation, thereby reducing conditioned fear acutely and enduringly. Moreover, mice demonstrated operant responding for reactivation of a positive memory, confirming its reward-like properties. These results show that interference from a rewarding experience can counteract negative states. While interference induced by memory reactivation involved a relatively small set of neurons, we also found that activating a large population of randomly labeled dDG neurons was effective at disrupting fear reconsolidation. Importantly, reconsolidation-interference was specific to the fear memory. These findings implicate the dDG as a potential therapeutic node for modulating memories to suppress fear.


Science ◽  
2018 ◽  
Vol 360 (6394) ◽  
pp. 1227-1231 ◽  
Author(s):  
Kareem Abdou ◽  
Mohammad Shehata ◽  
Kiriko Choko ◽  
Hirofumi Nishizono ◽  
Mina Matsuo ◽  
...  

Memories are integrated into interconnected networks; nevertheless, each memory has its own identity. How the brain defines specific memory identity out of intermingled memories stored in a shared cell ensemble has remained elusive. We found that after complete retrograde amnesia of auditory fear conditioning in mice, optogenetic stimulation of the auditory inputs to the lateral amygdala failed to induce memory recall, implying that the memory engram no longer existed in that circuit. Complete amnesia of a given fear memory did not affect another linked fear memory encoded in the shared ensemble. Optogenetic potentiation or depotentiation of the plasticity at synapses specific to one memory affected the recall of only that memory. Thus, the sharing of engram cells underlies the linkage between memories, whereas synapse-specific plasticity guarantees the identity and storage of individual memories.


2016 ◽  
Vol 84 (10) ◽  
pp. 2861-2870 ◽  
Author(s):  
Fumiaki Ihara ◽  
Maki Nishimura ◽  
Yoshikage Muroi ◽  
Motamed Elsayed Mahmoud ◽  
Naoaki Yokoyama ◽  
...  

Chronic infection withToxoplasma gondiibecomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found thatT. gondiiinfection impairs consolidation of conditioned fear memory. To examine the brain pathology induced byT. gondiiinfection, we analyzed the parasite load and histopathological changes.T. gondiiinfects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest thatT. gondiiinfection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen duringT. gondiiinfection.


2021 ◽  
Author(s):  
Julie Bailly ◽  
Florence Allain ◽  
Chloe Tirel ◽  
Florence Petit ◽  
Emmanuel Darcq ◽  
...  

BACKGROUND: The mu opioid receptor (MOR) is central to hedonic balance, and produces euphoria by engaging reward circuits. MOR signaling may also influence aversion centers, and notably the medial habenula (MHb) where the receptor is highly dense, however this was not investigated. Our prior data suggest that the inhibitory activity of MOR in the MHb limits aversive states. Here we therefore tested the hypothesis that neurons expressing MOR in the MHb (MHb-MOR neurons) promote negative affective states. METHODS: Using Oprm1-Cre knock-in mice, we combined tracing and optogenetics with behavioral testing to investigate consequences of MHb-MOR neuron stimulation in approach/avoidance (real-time place preference), anxiety-related responses (open field, elevated plus maze and marble burying) and despair-like behavior (tail suspension). RESULTS: Opto-stimulation of MHb-MOR neurons elicited avoidance behavior, demonstrating that these neurons promote aversive states. Anterograde tracing showed that, in addition to the interpeduncular nucleus (IPN), MHb-MOR neurons project to the dorsal raphe nucleus (DRN), uncovering a yet unreported connection of MHb to a main mood center. Opto-stimulation of MHb-MOR/IPN neurons triggered avoidance and despair-like responses with no anxiety-related effect, whereas light-activation of MHb-MOR/DRN neurons increased levels of anxiety with no effect on other behaviors, revealing two dissociable pathways controlling negative affect. CONCLUSIONS: This study demonstrates aversive activity of MHb neurons that respond to MOR opioids. We propose that inhibition of these neurons by endogenous or exogenous opioids relieves negative affect via two distinct MHb microcircuits, contributing to despair-like behavior (MHb-MOR/IPN) and anxiety (MHb-MOR/DRN). This mechanism has implications for hedonic homeostasis and addiction.  


1975 ◽  
Vol 20 (12) ◽  
pp. 923-924
Author(s):  
MADGE E. SCHEIBEL ◽  
ARNOLD B. SCHEIBEL

2014 ◽  
Vol 22 (3) ◽  
pp. 431
Author(s):  
Xiangxing ZENG ◽  
Yanhui XIANG ◽  
Juan DU ◽  
Xifu ZHENG
Keyword(s):  

2020 ◽  
Vol 44 (3) ◽  
pp. 241-249
Author(s):  
Yoshiaki Omura

While a visiting Professor at the University of Paris, VI (formerly Sorvonne) more than 40 years ago, the Author became very good friends with Dr. Paul Nogier who periodically gave seminars and workshops in Paris. After the author diagnosed his cervical problem & offered him simple help, Dr. Nogier asked the Author to present lectures and demonstrations on the effects of ear stimulation, namely the effects of acupuncture & electrical stimulation of the ear lobules. It is only now, in 2019 that we have discovered 2–5 minute high frequency stimulation of the ear lobule inhibits cancer activity for 1– 4 hours post stimulation. Although the procedure is extremely simple. First take optimal dose of Vitamin D3, which has the most essential 10 unique beneficial factors required for every human cell activity. Next, apply high frequency stimulation to ear lobule while the worst ear lobule is held by all fingers with vibrator directly touching the surface of the worst ear lobule, preferably after patient repeatedly takes optimal dose of Vitamin D3. When the worst ear lobule is held between thumb & index fingers and applying mechanical stimulation of 250 ~ 500 mechanical vibration/second for 2 ~ 5 minutes using an electrical vibrator, there is rapid disappearance of cancer activity in both the brain and rest of the body for short time duration 1 ~ 4 hours. The effect often increases by additional pressure by holding fingers. As of May 2019, the Author found that many people from various regions of the world developed early stages of multiple cancers. For evaluation of this study, U. S. patented Bi-Digital O-Ring Test (BDORT) was used which was developed by the Author while doing his Graduate experimental physics research at Colombia University. BDORT was found to be most essential for determining the beneficial effects as well as harmful effects of any substance or treatment. Using BDORT, Author was the first to recognize severe increasing mid-backache was an early sign of pancreatic cancer of President of New York State Board of Medicine after top pain specialists failed to detect the cause after 3 years of effort, while the BDORT showed early stages of cancer whereas conventional X-Ray of the pancreas did not show any cancer image until 2 months after Author detected with BDORT. For example, the optimal dose of the banana is usually about 2.0 - 2.5 millimeters cross section of the banana. A whole banana is more than 50 ~ 100 times the optimal dose. Any substance eaten in more than 25 times of its optimal dose becomes highly toxic and creates DNA mutations which can cause multiple malignancies in the presence of strong electro-magnetic field. With standard medication given by doctor, patients often become sick and they are unable to reduce body weight, unless medication is reduced or completely stopped. When the amount of zinc is very high, DNA often becomes unstable and multiple cancers can grow rapidly in the presence of strong electromagnetic field. Large amount of Vitamin C from regular orange or orange juice inhibit the most important Vitamin D3 effects. At least 3 kinds of low Vitamin C oranges will not inhibit Vitamin D3. Since B12 particularly methyl cobalamin which is a red small tablet is known to improve brain circulation very significantly we examined its effect within 20 seconds of oral intake we found the following very significant changes. Acetylcholine in both sides of the brain often increases over 4,500 ng. Longevity gene Sirtuin 1 level increases significantly for short time of few hours. Thymosin α1 and Thymosinβ4 both increase to over 1500 ng from 20 ng or less.


Sign in / Sign up

Export Citation Format

Share Document