scholarly journals Rhizosphere Bacteria Exhibit Narrower Environmental Adaptation in Proso Millet Than in Foxtail Millet and Sorghum in Agricultural Fields

Author(s):  
Lixin Tian ◽  
Feifei Zhang ◽  
Pengliang Chen ◽  
Panpan Zhang ◽  
Zhijun Gao ◽  
...  

Abstract It is of great ecological significance to understand how the assembly processes of soil microbe communities respond to environmental change. However, the assembly processes of the rhizosphere bacterial communities in three minor grain crops (i.e., foxtail millet, proso millet, and sorghum) across agro-ecosystems are rarely investigated. Here, we investigated the environmental thresholds and phylogenetic signals for ecological preferences of rhizosphere bacterial communities of three minor grain crop taxa across complex environmental gradients to reflect their environmental adaptation. Additionally, we reported environmental factors affecting their community assembly processes based on a large-scale soil survey in agricultural fields across northern China using high-throughput sequencing.. The results demonstrated a narrower range of environmental thresholds and weaker phylogenetic signals for the ecological traits of rhizosphere bacteria in proso millet than in foxtail millet and sorghum fields, while proso millet rhizosphere community was the most phylogenetically clustered. The null model analysis indicated that homogeneous selection belonging to deterministic processes governed the sorghum rhizosphere community, whereas dispersal limitation belonging to stochastic processes was the critical assembly process in the foxtail and proso millet. Mean annual temperature was the decisive factor for adjusting the balance between stochasticity and determinism of the foxtail millet, proso millet, and sorghum rhizosphere communities. A higher temperature resulted in stochasticity in the proso millet and sorghum communities. For the foxtail millet community, the deterministic assembly increased with an increase in temperature. These results contribute to the understanding of root-associated bacterial community assembly processes in agro-ecosystems on a large scale.

2011 ◽  
Vol 40 (8) ◽  
pp. 1128-1135 ◽  
Author(s):  
Jee-Yeon Ko ◽  
Seuk-Bo Song ◽  
Jae-Saeng Lee ◽  
Jong-Rae Kang ◽  
Myung-Chul Seo ◽  
...  

2011 ◽  
Vol 40 (6) ◽  
pp. 790-797 ◽  
Author(s):  
Myung-Chul Seo ◽  
Jee-Yeon Ko ◽  
Seuk-Bo Song ◽  
Jae-Saeng Lee ◽  
Jong-Rae Kang ◽  
...  

BIO-PROTOCOL ◽  
2015 ◽  
Vol 5 (16) ◽  
Author(s):  
Laura White ◽  
Volker Br�zel ◽  
Senthil Subramanian

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


Author(s):  
Pamela Wiener ◽  
Christelle Robert ◽  
Abulgasim Ahbara ◽  
Mazdak Salavati ◽  
Ayele Abebe ◽  
...  

Abstract Great progress has been made over recent years in the identification of selection signatures in the genomes of livestock species. This work has primarily been carried out in commercial breeds for which the dominant selection pressures, are associated with artificial selection. As agriculture and food security are likely to be strongly affected by climate change, a better understanding of environment-imposed selection on agricultural species is warranted. Ethiopia is an ideal setting to investigate environmental adaptation in livestock due to its wide variation in geo-climatic characteristics and the extensive genetic and phenotypic variation of its livestock. Here, we identified over three million single nucleotide variants across 12 Ethiopian sheep populations and applied landscape genomics approaches to investigate the association between these variants and environmental variables. Our results suggest that environmental adaptation for precipitation-related variables is stronger than that related to altitude or temperature, consistent with large-scale meta-analyses of selection pressure across species. The set of genes showing association with environmental variables was enriched for genes highly expressed in human blood and nerve tissues. There was also evidence of enrichment for genes associated with high-altitude adaptation although no strong association was identified with hypoxia-inducible-factor (HIF) genes. One of the strongest altitude-related signals was for a collagen gene, consistent with previous studies of high-altitude adaptation. Several altitude-associated genes also showed evidence of adaptation with temperature, suggesting a relationship between responses to these environmental factors. These results provide a foundation to investigate further the effects of climatic variables on small ruminant populations.


Sign in / Sign up

Export Citation Format

Share Document