Competing at the Cybathlon Championship for Athletes With Disabilities: Long-Term Motor Imagery Brain-Computer Interface Training of a Tetraplegic Cybathlete

Author(s):  
Attila Korik ◽  
Karl McCreadie ◽  
Niall McShane ◽  
Naomi Du Bois ◽  
Massoud Khodadadzadeh ◽  
...  

Abstract Background: The brain-computer interface (BCI) race at the Cybathlon championship for athletes with disabilities challenges teams (BCI researchers, developers and pilots with spinal cord injury) to control an avatar on a virtual racetrack without movement. Here we describe the training regime and results of the Ulster University BCI Team pilot who is tetraplegic and has trained to use an electroencephalography (EEG)-based BCI intermittently over 10 years, to compete in three Cybathlon events. Methods: A multi-class, multiple binary classifier framework was used to decode three kinesthetically imagined movements (motor imagery) (left (L) and right (R) arm and feet (F)) as well as relax state (X). Three games paradigms were used for training i.e., NeuroSensi, Triad, and Cybathlon: BrainDriver. An evaluation of the pilot’s performance is presented for two Cybathlon competition training periods – spanning 20 sessions over 5 weeks prior to the 2019 competition, and 25 sessions over 5 weeks in the run up to the 2020 competition.Results: Having participated in BCI training in 2009 and competed in Cybathlon 2016, the experienced pilot achieved high two-class accuracy on all class pairs when training began in 2019 (decoding accuracy >90%, resulting in efficient NeuroSensi and Triad game control). The BrainDriver performance (i.e., Cybathlon race completion time) improved significantly during the training period, leading up to the competition day, ranging from 274s - 156s (255±24s to 191±14s mean±std), over 17 days (10 sessions) in 2019, and from 230s - 168s (214±14s to 181±4s), over 18 days (13 sessions) in 2020. However, on both competition occasions, towards the race date, the performance deteriorated significantly.Conclusions: The training regime and framework applied were highly effective in achieving competitive race completion times. The BCI framework did not cope with significant deviation in electroencephalography (EEG) observed in the sessions occurring shortly before and during the race day. Stress, arousal level and fatigue, associated with the competition challenge and performance pressure resulting in cognitive state changes, were likely contributing factors to the nonstationary effects that resulted in the BCI and pilot achieving suboptimal performance on race day. Trial registration: not registered

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Irma Nayeli Angulo-Sherman ◽  
David Gutiérrez

We study the relationship between electroencephalographic (EEG) coherence and accuracy in operating a brain-computer interface (BCI). In our case, the BCI is controlled through motor imagery. Hence, a number of volunteers were trained using different training paradigms: classical visual feedback, auditory stimulation, and functional electrical stimulation (FES). After each training session, the volunteers’ accuracy in operating the BCI was assessed, and the event-related coherence (ErCoh) was calculated for all possible combinations of pairs of EEG sensors. After at least four training sessions, we searched for significant differences in accuracy and ErCoh using one-way analysis of variance (ANOVA) and multiple comparison tests. Our results show that there exists a high correlation between an increase in ErCoh and performance improvement, and this effect is mainly localized in the centrofrontal and centroparietal brain regions for the case of our motor imagery task. This result has a direct implication with the development of new techniques to evaluate BCI performance and the process of selecting a feedback modality that better enhances the volunteer’s capacity to operate a BCI system.


2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document