DEVELOPMENT OF THE NEW TEST SECTION WITH MOVEABLE SIDE WALLS OF THE WRIGHT FIELD 10-FOOT WIND TUNNEL (PHASE-A OPERATION WITH SLOTS CLOSED)

1952 ◽  
Author(s):  
BERNHARD H. GOETHERT
Keyword(s):  
1997 ◽  
Vol 200 (10) ◽  
pp. 1441-1449 ◽  
Author(s):  
C J Pennycuick ◽  
T Alerstam ◽  
A Hedenström

A new wind tunnel for experiments on bird flight was completed at Lund University, Sweden, in September 1994. It is a closed-circuit design, with a settling section containing five screens and a contraction ratio of 12.25. The test section is octagonal, 1.20 m wide by 1.08 m high. The first 1.2 m of its length is enclosed by acrylic walls, and the last 0.5 m is open, giving unrestricted access. Experiments can be carried out in both the open and closed parts, and comparison between them can potentially be used to measure the lift effect correction. The fan is driven by an a.c. motor with a variable-frequency power supply, allowing the wind speed to be varied continuously from 0 to 38 m s-1. The whole machine can be tilted to give up to 8 ° descent and 6 ° climb. A pitot-static survey in the test section showed that the air speed was within ±1.3 % of the mean at 116 out of 119 sample points, exceeding this deviation at only three points at the edges. A hot-wire anemometer survey showed that the turbulence level in the closed part of the test section was below 0.04 % of the wind speed throughout most of the closed part of the test section, rising to approximately 0.06 % in the middle of the open part. No residual rotation from the fan could be detected in the test section. No decrease in wind speed was detectable beyond 3 cm from the side walls of the closed part, and turbulence was minimal beyond 10 cm from the walls. The installation of a safety net at the entrance to the test section increased the turbulence level by a factor of at least 30, to 1.2 % longitudinally and 1.0 % transversely.


1978 ◽  
Vol 100 (1) ◽  
pp. 91-96 ◽  
Author(s):  
V. de Brederode ◽  
P. Bradshaw

Measurements in the entry region of a square duct (specifically, a wind-tunnel working section) show that the direct effect of stress-induced secondary flows in the corners on the center-plane boundary layer is negligible for boundary layers thinner than about one-fourth of the duct width. Further, the effects of streamwise pressure gradient and of quasi-collinear lateral convergence tend to cancel so that the velocity profiles and skin friction are quite close to those on a flat plate. This shows that the boundary layer on the floor of a wind tunnel of constant, square cross section can be used to simulate a flat-plate flow even when the boundary layer thickness is as large as one-fourth of the tunnel height.


2013 ◽  
Vol 5 (3) ◽  
pp. 305-314 ◽  
Author(s):  
Luciana Bassi Marinho Pires ◽  
Igor Braga De Paula ◽  
Gilberto Fisch ◽  
Ralf Gielow ◽  
Roberto Da Mota Girardi

Sign in / Sign up

Export Citation Format

Share Document