The Structure and Control of Three-Dimensional Shock Wave Turbulent Boundary Layer Interactions.

Author(s):  
Seymour M. Bogdonoff
1966 ◽  
Vol 17 (3) ◽  
pp. 231-252 ◽  
Author(s):  
A. McCabe

SummaryExperiments are described on the interaction of the shock wave generated by a wedge in a supersonic wind tunnel with the turbulent boundary layer on the side wall. It is shown that the onset of separation appears to be largely affected by the action of streamwise vorticity in the interaction region. A simple approximate theory based on this concept shows reasonable agreement with the experimental results. Comparisons have been made with two-dimensional interactions of normal shocks and boundary layers, but they did not produce any conclusive results.


2009 ◽  
Vol 622 ◽  
pp. 33-62 ◽  
Author(s):  
R. A. HUMBLE ◽  
G. E. ELSINGA ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An experimental study is carried out to investigate the three-dimensional instantaneous structure of an incident shock wave/turbulent boundary layer interaction at Mach 2.1 using tomographic particle image velocimetry. Large-scale coherent motions within the incoming boundary layer are observed, in the form of three-dimensional streamwise-elongated regions of relatively low- and high-speed fluid, similar to what has been reported in other supersonic boundary layers. Three-dimensional vortical structures are found to be associated with the low-speed regions, in a way that can be explained by the hairpin packet model. The instantaneous reflected shock wave pattern is observed to conform to the low- and high-speed regions as they enter the interaction, and its organization may be qualitatively decomposed into streamwise translation and spanwise rippling patterns, in agreement with what has been observed in direct numerical simulations. The results are used to construct a conceptual model of the three-dimensional unsteady flow organization of the interaction.


2000 ◽  
Vol 409 ◽  
pp. 121-147 ◽  
Author(s):  
D. KNIGHT ◽  
M. GNEDIN ◽  
R. BECHT ◽  
A. ZHELTOVODOV

A crossing-shock-wave/turbulent-boundary-layer interaction is investigated using the k–ε turbulence model with a new low-Reynolds-number model based on the approach of Saffman (1970) and Speziale et al. (1990). The crossing shocks are generated by two wedge-shaped fins with wedge angles α1 and α2 attached normal to a flat plate on which an equilibrium supersonic turbulent boundary layer has developed. Two configurations, corresponding to the experiments of Zheltovodov et al. (1994, 1998a, b), are considered. The free-stream Mach number is 3.9, and the fin angles are (α1, α2) = (7°, 7°) and (7°, 11°). The computed surface pressure displays very good agreement with experiment. The computed surface skin friction lines are in close agreement with experiment for the initial separation, and are in qualitative agreement within the crossing shock interaction region. The computed heat transfer is in good agreement with experiment for the (α1, α2) = (7°, 7°) configuration. For the (α1, α2) = (7°, 11°) configuration, the heat transfer is significantly overpredicted within the three-dimensional interaction. The adiabatic wall temperature is accurately predicted for both configurations.


Sign in / Sign up

Export Citation Format

Share Document