Identification of Novel Candidate Tumor Suppressor Genes Using C. elegans as a Model.

1996 ◽  
Author(s):  
Paul W. Sternberg
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3001-3001
Author(s):  
Norihiko Kawamata ◽  
Takayuki Saitoh ◽  
Sakura Sakajiri ◽  
Phillip H. Koeffler

Abstract Many tumor suppressor genes are silenced by epigenetic mechanisms in human cancers, including mantle cell lymphoma (MCL). In this study, we have used a variety of research tools to screen for genes that are epigenetically silenced in MCL. Changes in the global gene expression profile of the MCL cell line, Jeko1, were analyzed after treatment with the combination of the demethylating agent, 5-aza-2′-deoxycytidine, and the histone deacetylase inhibitor, suberoyl anilide bishydroxamide, by DNA microarray technique. By screening over 22,000 genes, we identified 26 candidate tumor suppressor genes, expression of which were enhanced by the treatment, in the MCL line. Basal expression of these 26 genes were low in Jeko1 cells. The treatment enhanced the expression more than 2 folds and the enhancement was also confirmed by real-time PCR. Methylation status of these 26 genes were examined by bisulfite sequencing and/or combined bisulfite and restriction enzyme digestion assay in Jeko1 cells. We found hypermethylation of a CpG island in the middle of the INPP5F gene. We also found the hypermethylation of that region of INPP5F in normal peripheral blood. We also examined expression levels of these 26 genes in normal mantle cells by real-time PCR and found only 11 genes showed high levels of transcription in laser-dissected normal mantle cells. We examined expression of these 11 genes in eight MCL clinical samples by real-time PCR and found that only three genes, INPP5F, DUSP10 and FGD2 showed very low expression levels. We conclude that expression of INPP5F, DUSP10 and FGD2 genes were suppressed in MCL cells although the expression of these genes are high in normal mantle cells. INPP5F is a inositol phosphatase and could be involved in PI3K pathway. DUSP10 is a dual specific phosphatase and could be involved in JNK pathway. FGD2 is a RAS-GAP gene and could be involved in RAS pathway. These three genes may be candidate tumor suppressor genes in MCL and further functional analysis is ongoing.


Sign in / Sign up

Export Citation Format

Share Document