tumor suppressor genes
Recently Published Documents


TOTAL DOCUMENTS

1718
(FIVE YEARS 292)

H-INDEX

88
(FIVE YEARS 9)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 127
Author(s):  
Adelaide Ohui Fierti ◽  
Michael Bright Yakass ◽  
Ernest Adjei Okertchiri ◽  
Samuel Mawuli Adadey ◽  
Osbourne Quaye

Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ritu Raina ◽  
Abdulmajeed G. Almutary ◽  
Sali Abubaker Bagabir ◽  
Nazia Afroze ◽  
Sharmila Fagoonee ◽  
...  

Purpose: Plant-derived phytochemicals have shown epigenetic modulatory effect in different types of cancer by reversing the pattern of DNA methylation and chromatin modulation, thereby restoring the function of silenced tumor-suppressor genes. In the present study, attempts have been made to explore chrysin-mediated epigenetic alterations in HeLa cells.Methods: Colony formation and migration assays followed by methylation-specific PCR for examining the methylation status of CpG promoters of various tumor-suppressor genes (TSGs) and the expression of these TSGs at the transcript and protein levels were performed. Furthermore, global DNA methylation; biochemical activities of DNA methyltransferases (DNMTs), histone methyl transferases (HMTs), histone deacetylases (HDACs), and histone acetyl transferases (HATs) along with the expression analysis of chromatin-modifying enzymes; and H3 and H4 histone modification marks analyses were performed after chrysin treatment.Results: The experimental analyses revealed that chrysin treatment encourages cytostatic behavior as well as inhibits the migration capacity of HeLa cells in a time- and dose-dependent manner. Chrysin reduces the methylation of various tumor-suppressor genes, leading to their reactivation at mRNA and protein levels. The expression levels of various chromatin-modifying enzymes viz DNMTs, HMTs, HDACs, and HATS were found to be decreased, and H3 and H4 histone modification marks were modulated too. Also, reduced global DNA methylation was observed following the treatment of chrysin.Conclusion: This study concludes that chrysin can be used as a potential epigenetic modifier for cancer treatment and warrants for further experimental validation.


2022 ◽  
Vol 20 (6) ◽  
pp. 41-54
Author(s):  
N. A. Smetannikova ◽  
M. A. Abdurashitov ◽  
A. G. Akishev ◽  
P. I. Pozdnyakov ◽  
E. V. Dubinin ◽  
...  

Hypermethylation of the RcgY sites is shown for many cancer diseases. such aberrant methylation, suppressing the gene activity, occurs at early stages of carcinogenesis. Recently, using glad-pcR assay, we have detected aberrantly methylated RcgY sites, which can be considered to be epigenetic markers of colorectal, lung, and gastric cancers. in breast cancer, methylation of the regulatory regions of ALX4, BMP2, CCND2, CDH13, CDX1, FOXA1, GALR1, GATA5, GREM1, HIC1, HMX2, HS3ST2, HOXC10, ICAM5, LAMA1, RARB, RASSF1A, RUNX3, RXRG, RYR2, SFRP2, SOX17, TERT, and ZNF613 tumor-suppressor genes is reported. in the present work, we determined aberrantly methylated RcgY sites in the regulatory regions of these genes in dNa preparations from breast cancer tissues. the study of dNa samples from 30 tumor and 22 normal mammary tissue samples demonstrates a high diagnostic potential of selected R(5mc)gY sites in regulatory regions of CCND2, BMP2, GALR1, SOX17, HMX2, and HS3ST2 genes with total index of sensitivity and specificity for R(5mc)gY detection in tumor dNa 90.0 % and 100.0 %, respectively.


2022 ◽  
Vol 23 (2) ◽  
pp. 764
Author(s):  
Carlos García-Padilla ◽  
Ángel Dueñas ◽  
Virginio García-López ◽  
Amelia Aránega ◽  
Diego Franco ◽  
...  

Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.


2022 ◽  
Author(s):  
Luuk Heitink ◽  
James R. Whittle ◽  
François Vaillant ◽  
Bianca D. Capaldo ◽  
Johanna F. Dekkers ◽  
...  

2021 ◽  
Vol 23 ◽  
Author(s):  
Binta Varghese ◽  
Ravisankar V ◽  
Deepu Mathew

Background: Even though miRNAs play viral roles in developmental biology by regulating the translation of mRNAs, they are poorly studied in oomycetes, especially in plant pathogen Phytophthora. Objective: The study was aimed to predict and identify the putative miRNAs and their targets in Phytophthora infestans and Phytophthora cinnamomi. Methods: Homology based comparative method was used to identify the unique miRNA sequences in P. infestans and P. cinnamomi with 148,689 EST and TSA sequences of these species. Secondary structure prediction of sRNAs for the 76 resultant sequences has been performed with MFOLD tool and their targets were predicted using psRNAtarget. Result: Novel miRNAs, miR-8210 and miR-4968 were predicted from P. infestans and P. cinnamomi, respectively along with their structural features. The newly identified miRNAs were identified to play important roles in gene regulation, with few of their target genes predicted as transcription factors, tumor suppressor genes, stress responsive genes, DNA repairing genes etc. Conclusion: The miRNAs and their targets identified have opened new interference and editing targets for the development of Phytophthora resistant crop varieties.


Author(s):  
Javier Contreras Cardenas ◽  

By 2008, it was estimated that there were about 12.7 million new cases of cancer worldwide, resulting in 7.6 million deaths. We are aware of the heterogeneity that exists and that it is impossible to link its development in any organ to a single pathophysiological mechanism. The greatest risk factor for developing cancer is aging, as age is directly proportional to accumulated aberrations and exposure to carcinogens. Most cancers occur in people who have no overt immunodeficiency. It is evident, then, that tumor cells must develop mechanisms to escape or evade the immune system in immunocompetent hosts. The main mechanisms of innate immunity against viruses are inhibition of infection by type I interferons and NK cell-mediated death of infected cells. The hypothesis is that perhaps the ability of epigenetic modification, which varies from virus to virus, is not exclusively reduced to the ability to activate genes that lead to cancer; but also randomly empower the organism to activate tumor suppressor genes.


2021 ◽  
Author(s):  
Alexander B Coley ◽  
Ashlyn N Stahly ◽  
Mohan V Kasukurthi ◽  
Addison A Barchie ◽  
Sam B Hutcheson ◽  
...  

We have identified 38 specifically excised, differentially expressed snoRNA fragments (sdRNAs) in TCGA prostate cancer (PCa) patient samples as compared to normal prostate controls. SnoRNA-derived fragments sdRNA-D19b and -A24 emerged among the most differentially expressed and were selected for further experimentation. We found that overexpression of either sdRNA significantly increased PC3 (a well-established model of castration-resistant prostate cancer (CRPC)) cell proliferation, and that sdRNA-D19b overexpression also markedly increased the rate of PC3 cell migration. In addition, both sdRNAs provided drug-specific resistances with sdRNA-D19b levels correlating with paclitaxel resistance and sdRNA-24A conferring dasatinib resistance. In silico and in vitro analyses revealed that two established PCa tumor suppressor genes, CD44 and CDK12, represent targets for sdRNA-D19b and sdRNA-A24 respectively. This outlines a biologically coherent mechanism by which sdRNAs downregulate tumor suppressors in AR- PCa to enhance proliferative and metastatic capabilities and to encourage chemotherapeutic resistance. Aggressive proliferation, rampant metastasis, and recalcitrance to chemotherapy are core characteristics of CRPC that synergize to produce a pathology that ranks 2nd in cancer-related deaths for men. This study defines sdRNA-D19b and -A24 as contributors to AR- PCa potentially providing novel biomarkers and therapeutic targets of use in PCa clinical intervention.


Sign in / Sign up

Export Citation Format

Share Document