Artificial Intelligence and Operations Research: Challenges and Opportunities in Planning and Scheduling

2001 ◽  
Author(s):  
Carla P. Gomes
2000 ◽  
Vol 15 (1) ◽  
pp. 1-10 ◽  
Author(s):  
CARLA P. GOMES

Both the Artificial Intelligence (AI) and the Operations Research (OR) communities are interested in developing techniques for solving hard combinatorial problems, in particular in the domain of planning and scheduling. AI approaches encompass a rich collection of knowledge representation formalisms for dealing with a wide variety of real-world problems. Some examples are constraint programming representations, logical formalisms, declarative and functional programming languages such as Prolog and Lisp, Bayesian models, rule-based formalism, etc. The downside of such rich representations is that in general they lead to intractable problems, and we therefore often cannot use such formalisms for handling realistic size problems. OR, on the other hand, has focused on more tractable representations, such as linear programming formulations. OR-based techniques have demonstrated the ability to identify optimal and locally optimal solutions for well-defined problem spaces. In general, however, OR solutions are restricted to rigid models with limited expressive power. AI techniques, on the other hand, provide richer and more flexible representations of real-world problems, supporting efficient constraint-based reasoning mechanisms as well as mixed initiative frameworks, which allow the human expertise to be in the loop. The challenge lies in providing representations that are expressive enough to describe real-world problems and at the same time guaranteeing good and fast solutions.


2001 ◽  
Vol 16 (1) ◽  
pp. 1-4 ◽  
Author(s):  
CARLA P. GOMES

This is the second of two special issues focusing on the integration of artificial intelligence (AI) and operations research (OR) techniques for solving hard computational problems, with an emphasis on planning and scheduling. Both the AI and the OR community have developed sophisticated techniques to tackle such challenging problems. OR has relied heavily on mathematical programming formulations such as integer and linear programming, while AI has developed constraint-based search techniques and inference methods. Recently, we have seen a convergence of ideas, drawing on the individual strengths of these paradigms.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ruonan Wang ◽  
Min Luo ◽  
Yihong Wen ◽  
Lianhai Wang ◽  
Kim-Kwang Raymond Choo ◽  
...  

There has been increased interest in applying artificial intelligence (AI) in various settings to inform decision-making and facilitate predictive analytics. In recent times, there have also been attempts to utilize blockchain (a peer-to-peer distributed system) to facilitate AI applications, for example, in secure data sharing (for model training), preserving data privacy, and supporting trusted AI decision and decentralized AI. Hence, in this paper, we perform a comprehensive review of how blockchain can benefit AI from these four aspects. Our analysis of 27 English-language articles published between 2018 and 2021 identifies a number of research challenges and opportunities.


2021 ◽  
Vol 15 (8) ◽  
pp. 841-853
Author(s):  
Yuan Liu ◽  
Zhining Wen ◽  
Menglong Li

Background:: The utilization of genetic data to investigate biological problems has recently become a vital approach. However, it is undeniable that the heterogeneity of original samples at the biological level is usually ignored when utilizing genetic data. Different cell-constitutions of a sample could differentiate the expression profile, and set considerable biases for downstream research. Matrix factorization (MF) which originated as a set of mathematical methods, has contributed massively to deconvoluting genetic profiles in silico, especially at the expression level. Objective: With the development of artificial intelligence algorithms and machine learning, the number of computational methods for solving heterogeneous problems is also rapidly abundant. However, a structural view from the angle of using MF to deconvolute genetic data is quite limited. This study was conducted to review the usages of MF methods on heterogeneous problems of genetic data on expression level. Methods: MF methods involved in deconvolution were reviewed according to their individual strengths. The demonstration is presented separately into three sections: application scenarios, method categories and summarization for tools. Specifically, application scenarios defined deconvoluting problem with applying scenarios. Method categories summarized MF algorithms contributed to different scenarios. Summarization for tools listed functions and developed web-servers over the latest decade. Additionally, challenges and opportunities of relative fields are discussed. Results and Conclusion: Based on the investigation, this study aims to present a relatively global picture to assist researchers to achieve a quicker access of deconvoluting genetic data in silico, further to help researchers in selecting suitable MF methods based on the different scenarios.


Sign in / Sign up

Export Citation Format

Share Document