scholarly journals On the intersection of AI and OR

2001 ◽  
Vol 16 (1) ◽  
pp. 1-4 ◽  
Author(s):  
CARLA P. GOMES

This is the second of two special issues focusing on the integration of artificial intelligence (AI) and operations research (OR) techniques for solving hard computational problems, with an emphasis on planning and scheduling. Both the AI and the OR community have developed sophisticated techniques to tackle such challenging problems. OR has relied heavily on mathematical programming formulations such as integer and linear programming, while AI has developed constraint-based search techniques and inference methods. Recently, we have seen a convergence of ideas, drawing on the individual strengths of these paradigms.

2000 ◽  
Vol 15 (1) ◽  
pp. 1-10 ◽  
Author(s):  
CARLA P. GOMES

Both the Artificial Intelligence (AI) and the Operations Research (OR) communities are interested in developing techniques for solving hard combinatorial problems, in particular in the domain of planning and scheduling. AI approaches encompass a rich collection of knowledge representation formalisms for dealing with a wide variety of real-world problems. Some examples are constraint programming representations, logical formalisms, declarative and functional programming languages such as Prolog and Lisp, Bayesian models, rule-based formalism, etc. The downside of such rich representations is that in general they lead to intractable problems, and we therefore often cannot use such formalisms for handling realistic size problems. OR, on the other hand, has focused on more tractable representations, such as linear programming formulations. OR-based techniques have demonstrated the ability to identify optimal and locally optimal solutions for well-defined problem spaces. In general, however, OR solutions are restricted to rigid models with limited expressive power. AI techniques, on the other hand, provide richer and more flexible representations of real-world problems, supporting efficient constraint-based reasoning mechanisms as well as mixed initiative frameworks, which allow the human expertise to be in the loop. The challenge lies in providing representations that are expressive enough to describe real-world problems and at the same time guaranteeing good and fast solutions.


2001 ◽  
Vol 16 (1) ◽  
pp. 85-99 ◽  
Author(s):  
STEVEN A. WOLFMAN ◽  
DANIEL S. WELD

Compilation to Boolean satisfiability has become a powerful paradigm for solving artificial intelligence problems. However, domains that require metric reasoning cannot be compiled efficiently to satisfiability even if they would otherwise benefit from compilation. We address this problem by combining techniques from the artificial intelligence and operations research communities. In particular, we introduce the LCNF (Linear Conjunctive Normal Form) representation that combines propositional logic with metric constraints. We present LPSAT (Linear Programming plus SATisfiability), an engine that solves LCNF problems by interleaving calls to an incremental Simplex algorithm with systematic satisfaction methods. We explore several techniques for enhancing LPSAT's efficiency and expressive power by adjusting the interaction between the satisfiability and linear programming components of LPSAT. Next, we describe a compiler that converts metric resource planning problems into LCNF for processing by LPSAT. Finally, the experimental section of the paper explores several optimisations to LPSAT, including learning from constraint failure and randomised cutoffs.


AI Magazine ◽  
2012 ◽  
Vol 34 (1) ◽  
pp. 10 ◽  
Author(s):  
Steve Kelling ◽  
Jeff Gerbracht ◽  
Daniel Fink ◽  
Carl Lagoze ◽  
Weng-Keen Wong ◽  
...  

In this paper we describe eBird, a citizen-science project that takes advantage of the human observational capacity to identify birds to species, which is then used to accurately represent patterns of bird occurrences across broad spatial and temporal extents. eBird employs artificial intelligence techniques such as machine learning to improve data quality by taking advantage of the synergies between human computation and mechanical computation. We call this a Human-Computer Learning Network, whose core is an active learning feedback loop between humans and machines that dramatically improves the quality of both, and thereby continually improves the effectiveness of the network as a whole. In this paper we explore how Human-Computer Learning Networks can leverage the contributions of a broad recruitment of human observers and processes their contributed data with Artificial Intelligence algorithms leading to a computational power that far exceeds the sum of the individual parts.


2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


1978 ◽  
Vol 100 (3) ◽  
pp. 356-362 ◽  
Author(s):  
S. S. Rao ◽  
S. K. Hati

The problem of determining the optimum machining conditions for a job requiring multiple operations has been investigated. Three objectives, namely, the minimization of the cost of production per piece, the maximization of the production rate and, the maximization of the profit are considered in this work. In addition to the usual constraints that arise from the individual machine tools, some coupling constraints have been included in the formulation. The problems are formulated as standard mathematical programming problems, and nonlinear programming techniques are used to solve the problems.


2021 ◽  
Vol 120 ◽  
pp. 02013
Author(s):  
Petya Biolcheva

In recent years, there has been increasing talk of the rapid entry of artificial intelligence into risk management. All the benefits it would bring over the whole process are often commented on: real-time results, processing large amounts of data, more complete risk identification, more accurate risk assessment, etc. There are also negative moods that make various experts feel threatened by their need to be replaced by artificial intelligence. Another problematic issue that arises is related to the transparency of algorithms and the increase in cyber risks [6]. This material aims to identify the individual elements at the stages of risk management in which artificial intelligence (AI) can and should be applied alone, in combination with expert opinion or not. Here it is shown that because of the use of AI the efficiency of the whole process is significantly increased, first of all by conducting in-depth analyses, and the decisions are made by the risk management experts. This proves its usefulness and increases the confidence of experts in it.


Sign in / Sign up

Export Citation Format

Share Document