Regulation of the Prostate Cancer Tumor Microenvironment

2014 ◽  
Author(s):  
Arnold I. Chin
2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hanbing Song ◽  
Hannah N. W. Weinstein ◽  
Paul Allegakoen ◽  
Marc H. Wadsworth ◽  
Jamie Xie ◽  
...  

AbstractProstate cancer is the second most common malignancy in men worldwide and consists of a mixture of tumor and non-tumor cell types. To characterize the prostate cancer tumor microenvironment, we perform single-cell RNA-sequencing on prostate biopsies, prostatectomy specimens, and patient-derived organoids from localized prostate cancer patients. We uncover heterogeneous cellular states in prostate epithelial cells marked by high androgen signaling states that are enriched in prostate cancer and identify a population of tumor-associated club cells that may be associated with prostate carcinogenesis. ERG-negative tumor cells, compared to ERG-positive cells, demonstrate shared heterogeneity with surrounding luminal epithelial cells and appear to give rise to common tumor microenvironment responses. Finally, we show that prostate epithelial organoids harbor tumor-associated epithelial cell states and are enriched with distinct cell types and states from their parent tissues. Our results provide diagnostically relevant insights and advance our understanding of the cellular states associated with prostate carcinogenesis.


2017 ◽  
Vol 15 (3) ◽  
pp. 281-293 ◽  
Author(s):  
Lisa Staunton ◽  
Claire Tonry ◽  
Rosina Lis ◽  
Virginia Espina ◽  
Lance Liotta ◽  
...  

2020 ◽  
Author(s):  
Hanbing Song ◽  
Hannah N.W. Weinstein ◽  
Paul Allegakoen ◽  
Marc H. Wadsworth ◽  
Jamie Xie ◽  
...  

AbstractProstate cancer is the second most common malignancy in men worldwide and consists of a mixture of tumor and non-tumor cell types. To characterize the prostate cancer tumor microenvironment, we performed single-cell RNA-sequencing on prostate biopsies, prostatectomy specimens, and patient-derived organoids from localized prostate cancer patients. We identify a population of tumor-associated club cells that may act as progenitor cells and uncover heterogeneous cellular states in prostate epithelial cells marked by high androgen signaling states that are enriched in prostate cancer. ERG- tumor cells, compared to ERG+ cells, demonstrate shared heterogeneity with surrounding luminal epithelial cells and appear to give rise to common tumor microenvironment responses. Finally, we show that prostate epithelial organoids recapitulate tumor-associated epithelial cell states and are enriched with distinct cell types and states from their parent tissues. Our results provide diagnostically relevant insights and advance our understanding of the cellular states associated with prostate carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document