A Plant Model for Smart Projectiles

2011 ◽  
Author(s):  
Robert J. Yager
Keyword(s):  
2015 ◽  
Vol 1092-1093 ◽  
pp. 356-361
Author(s):  
Peng Fei Zhang ◽  
Lian Guang Liu

With the application and development of Power Electronics, HVDC is applied more widely China. However, HVDC system has the possibilities to cause subsynchronous torsional vibration interaction with turbine generator shaft mechanical system. This paper simply introduces the mechanism, analytical methods and suppression measures of subsynchronous oscillation. Then it establishes a power plant model in islanding model using PSCAD, and analyzes the effects of the number and output of generators to SSO, and verifies the effect of SEDC and SSDC using time-domain simulation method. Simulation results show that the more number and output of generators is detrimental to the stable convergence of subsynchronous oscillation, and SEDC、SSDC can restrain unstable SSO, avoid divergence of SSO, ensure the generators and system operate safely and stably


Author(s):  
W Feng ◽  
I Postlethwaite

In robotics, despite considerable effort to minimize system modelling errors, uncertainties are always present and sometimes significant. In this paper, modelling errors are first represented by a class of bounded disturbances in the input channels (torques) of the robot. A measure of the robot system's ability to reject these disturbances is formulated in an L2 gain sense and a control design is subsequently proposed to achieve optimal disturbance rejection. If more detailed information is available on the plant-model mismatch, then the control design can be modified to incorporate an adaptive scheme (with explicit parameter updating laws) in order to reduce the conservativeness of the original design and to improve robust performance of the overall system.


Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 278 ◽  
Author(s):  
Dominik Schmidt ◽  
Katrin Kahlen

Fluctuating asymmetry in plant leaves is a widely used measure in geometric morphometrics for assessing random deviations from perfect symmetry. In this study, we considered the concept of fluctuating asymmetry to improve the prototype leaf shape of the functional-structural plant model L-Cucumber. The overall objective was to provide a realistic geometric representation of the leaves for the light sensitive plant reactions in the virtual plant model. Based on three-dimensional data from several hundred in situ digitized cucumber leaves comparisons of model leaves and measurements were conducted. Robust Bayesian comparison of groups was used to assess statistical differences between leaf halves while respecting fluctuating asymmetries. Results indicated almost no directional asymmetry in leaves comparing different distances from the prototype while detecting systematic deviations shared by both halves. This information was successfully included in an improved leaf prototype and implemented in the virtual plant model L-Cucumber. Comparative virtual plant simulations revealed a slight improvement in plant internode development against experimental data using the novel leaf shape. Further studies can now focus on analyses of stress on the 3D-deformation of the leaf and the development of a dynamic leaf shape model.


2017 ◽  
Vol 24 (11) ◽  
pp. 2261-2273 ◽  
Author(s):  
Eckart Uhlmann ◽  
Shashwat Kushwaha ◽  
Jan Mewis ◽  
Sebastian Richarz

In this paper, a technique for automatic robust control design and synthesis for plug and play active vibration control module is presented. Robust control theory offers the uncertainty analysis and graphical manipulation of the frequency response as well as analytical solution approach. The prior knowledge of the plant model imposes limitations on the fast and effective implementation of the robust control. Moreover, the design of the weight functions for the robust control is usually a trial and error process. The plant identification and subsequent control design becomes even more tedious for modular devices with plug and play capability. In the present paper, the plant model is identified by using polyreference least square complex frequency estimator and an innovative automatic pole clustering algorithm. The [Formula: see text] loop shaping robust control is designed, where the parameters of the weight functions are optimised using genetic algorithm. An experimental evaluation is also presented on a prototype modular structure.


Sign in / Sign up

Export Citation Format

Share Document