model mismatch
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 67)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Xiaoyue Cao ◽  
Ran Li ◽  
James Nightingale ◽  
Richard Massey ◽  
Andrew Robertson ◽  
...  

Abstract The elliptical power-law (EPL) mass model of the mass in a galaxy is widely used in strong gravitational lensing analyses. However, the distribution of mass in real galaxies is more complex. We quantify the biases due to this model mismatch by simulating and then analysing mock {\it Hubble Space Telescope} imaging of lenses with mass distributions inferred from SDSS-MaNGA stellar dynamics data. We find accurate recovery of source galaxy morphology, except for a slight tendency to infer sources to be more compact than their true size. The Einstein radius of the lens is also robustly recovered with 0.1\% accuracy, as is the global density slope, with 2.5\% relative systematic error, compared to the 3.4\% intrinsic dispersion. However, asymmetry in real lenses also leads to a spurious fitted `external shear' with typical strength, $\gamma_{\rm ext}=0.015$. Furthermore, time delays inferred from lens modelling without measurements of stellar dynamics are typically underestimated by $\sim$5\%. Using such measurements from a sub-sample of 37 lenses would bias measurements of the Hubble constant $H_0$ by $\sim$9\%. The next generation cosmography must use more complex lens mass models.


Author(s):  
Juan P. Cortés ◽  
Gabriel A. Alzamendi ◽  
Alejandro J. Weinstein ◽  
Juan I. Yuz ◽  
Víctor M. Espinoza ◽  
...  

Subglottal Impedance-Based Inverse Filtering (IBIF) allows for the continuous, non-invasive estimation of glottal airflow from a surface accelerometer placed over the anterior neck skin below the larynx, which has been shown to be advantageous for the ambulatory monitoring of vocal function. However, during long-term ambulatory recordings over several days, conditions may drift from the laboratory environment where the IBIF parameters were initially estimated due to sensor positioning, skin attachment, and temperature, among other factors. Observation uncertainties and model mismatch may result in significant deviations in the glottal airflow estimates, but are very difficult to quantify in ambulatory conditions due to a lack of a reference signal. To address this issue, we propose a Kalman filter implementation of the IBIF filter, which allows for both estimating the model uncertainty and adapting the airflow estimates to correct for signal deviations. One-way ANOVA results from laboratory experiments using the Rainbow Passage indicate a an improvement on amplitude-based measures for PVH subjects compared to IBIF which shows a statistically difference with respect to the reference oral airflow (p=0.02,F=4.1). MFDR from PVH subjects is slightly different to the oral airflow when compared to IBIF (p=0.04, F=3.3). Other measures did not have significant differences with either Kalman or IBIF, with the exception of H1H2, whose performance deteriorates for both methods. Overall, both methods show similar flottal airflow measures, with the advantage of Kalman by improving amplitude estimation. Moreover, Kalman filter deviations from the IBIF output airflow might suggest a better representation of some fine details in the ground-truth glottal airflow signal. Other applications may take more advantage from the adaptation offered by the Kalman filter implementation.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-25
Author(s):  
Liren Yang ◽  
Necmiye Ozay

In this paper, we study feedback dynamical systems with memoryless controllers under imperfect information. We develop an algorithm that searches for “adversarial scenarios”, which can be thought of as the strategy for the adversary representing the noise and disturbances, that lead to safety violations. The main challenge is to analyze the closed-loop system's vulnerabilities with a potentially complex or even unknown controller in the loop. As opposed to commonly adopted approaches that treat the system under test as a black-box, we propose a synthesis-guided approach, which leverages the knowledge of a plant model at hand. This hence leads to a way to deal with gray-box systems (i.e., with known plant and unknown controller). Our approach reveals the role of the imperfect information in the violation. Examples show that our approach can find non-trivial scenarios that are difficult to expose by random simulations. This approach is further extended to incorporate model mismatch and to falsify vision-in-the-loop systems against finite-time reach-avoid specifications.


2021 ◽  
Vol 51 (3) ◽  
pp. 123-133
Author(s):  
Tom Kusznir ◽  
Jarosław Smoczek

Abstract Overhead cranes carry out an important function in the transportation of loads in industry. The ability to transport a payload quickly and accurately without excessive oscillations could reduce the chance of accidents as well as increase productivity. Accurate modelling of the crane system dynamics reduces the plant-model mismatch which could improve the performance of model-based controllers. In this work the simulation model to be identified is developed using the Euler-Lagrange method with friction. A 5-step ahead predictor, as well as a 10-step ahead predictor, are obtained using multi-gene genetic programming (MGGP) using input-output data. The weights of the genes are obtained by using least squares. The results of 15 different genetic programming runs are plotted on a complexity-mean square error graph with the Pareto optimal solutions shown.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zahraa Bassyouni ◽  
Imad H. Elhajj

Recently, advancements in computational machinery have facilitated the integration of artificial intelligence (AI) to almost every field and industry. This fast-paced development in AI and sensing technologies have stirred an evolution in the realm of robotics. Concurrently, augmented reality (AR) applications are providing solutions to a myriad of robotics applications, such as demystifying robot motion intent and supporting intuitive control and feedback. In this paper, research papers combining the potentials of AI and AR in robotics over the last decade are presented and systematically reviewed. Four sources for data collection were utilized: Google Scholar, Scopus database, the International Conference on Robotics and Automation 2020 proceedings, and the references and citations of all identified papers. A total of 29 papers were analyzed from two perspectives: a theme-based perspective showcasing the relation between AR and AI, and an application-based analysis highlighting how the robotics application was affected. These two sections are further categorized based on the type of robotics platform and the type of robotics application, respectively. We analyze the work done and highlight some of the prevailing limitations hindering the field. Results also explain how AR and AI can be combined to solve the model-mismatch paradigm by creating a closed feedback loop between the user and the robot. This forms a solid base for increasing the efficiency of the robotic application and enhancing the user’s situational awareness, safety, and acceptance of AI robots. Our findings affirm the promising future for robust integration of AR and AI in numerous robotic applications.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1612
Author(s):  
Yan-Shu Huang ◽  
M. Ziyan Sheriff ◽  
Sunidhi Bachawala ◽  
Marcial Gonzalez ◽  
Zoltan K. Nagy ◽  
...  

The transition from batch to continuous processes in the pharmaceutical industry has been driven by the potential improvement in process controllability, product quality homogeneity, and reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a variety of pharmaceutical product manufacturing modalities to increase product quality through a three-level hierarchical control structure. In the implementation of the QbC approach it is common practice to simplify control algorithms by utilizing linearized models with constant model parameters. Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control degradation caused by plant-model mismatch, careful monitoring and continuous improvement strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical data in the past time window together with real-time data from the sensor network enable state estimation and accurate tracking of the highly sensitive model parameters. The adaptive model used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the essential but complex powder properties and provide physical interpretation of abnormal events. The adaptive NMPC implementation and its real-time control performance analysis and practical applicability are demonstrated through a series of illustrative examples that highlight the effectiveness of the proposed approach for different scenarios of plant-model mismatch, while also incorporating glidant effects.


Author(s):  
Pradeep Juneja ◽  
Sandeep Kumar Sunori ◽  
Abhinav Sharma ◽  
Anshu Sharma ◽  
Gurpreet Singh ◽  
...  

Author(s):  
Martin Hellkvist ◽  
Ayca Ozcelikkale
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document