Automatic design and synthesis of control for a plug and play active vibration control module

2017 ◽  
Vol 24 (11) ◽  
pp. 2261-2273 ◽  
Author(s):  
Eckart Uhlmann ◽  
Shashwat Kushwaha ◽  
Jan Mewis ◽  
Sebastian Richarz

In this paper, a technique for automatic robust control design and synthesis for plug and play active vibration control module is presented. Robust control theory offers the uncertainty analysis and graphical manipulation of the frequency response as well as analytical solution approach. The prior knowledge of the plant model imposes limitations on the fast and effective implementation of the robust control. Moreover, the design of the weight functions for the robust control is usually a trial and error process. The plant identification and subsequent control design becomes even more tedious for modular devices with plug and play capability. In the present paper, the plant model is identified by using polyreference least square complex frequency estimator and an innovative automatic pole clustering algorithm. The [Formula: see text] loop shaping robust control is designed, where the parameters of the weight functions are optimised using genetic algorithm. An experimental evaluation is also presented on a prototype modular structure.

Author(s):  
Gangli Chen ◽  
Xiaoting Rui ◽  
Yuanyuan Ding ◽  
Hanjing Lu

A new approach for active vibration control design of multi-rigid-flexible-body systems based on transfer matrix method for multibody systems (MSTMM) is presented in this paper. The vibration characteristics are computed by solving homogeneous linear algebraic equations. Then, the augmented eigenvector and body dynamics equation are adopted to derive the state space representation by combining modal superposition method. Furthermore, Linear Quadratic Gaussian (LQG) control strategy is employed to design the control law. Compared with the conventional methods, the proposed method has the following features: without system global dynamics equation, high programming, low order of system matrix and high computational speed. Formulations as well as a numerical example are given to validate the proposed method.


2018 ◽  
Vol 157 ◽  
pp. 14-26 ◽  
Author(s):  
C. Camacho-Gómez ◽  
X. Wang ◽  
E. Pereira ◽  
I.M. Díaz ◽  
S. Salcedo-Sanz

2007 ◽  
Vol 129 (5) ◽  
pp. 601-615 ◽  
Author(s):  
Rajiv Kumar ◽  
Moinuddin Khan

It is well known that there is degradation in the performance of a fixed parameter controller when the system parameters are subjected to a change. Conventional controllers can become even unstable, with these parametric uncertainties. This problem can be avoided by using robust and adaptive control design techniques. However, to obtain robust performance, it is desirable that the closed-loop poles of the perturbed structural system remain at prespecified locations for a range of system parameters. With the aim to obtain robust performance by manipulating the closed loop poles of the perturbed system, feasibility of the pole placement based controller design techniques is checked for active vibration control applications. The controllers based on the adaptive and robust pole placement method are implemented on smart structures. It was observed that the adaptive pole placement controllers are noise tolerant, but require high actuator voltages to maintain stability. However, robust pole placement controllers require comparatively small amplitude of control voltage to maintain stability, but are noise sensitive. It was realized that by using these techniques, robust stability and performance can be obtained for a moderate range of parametric uncertainties. However, the position of closed-loop poles should be judiciously chosen for both the control design strategies to maintain stability.


2012 ◽  
Vol 166-169 ◽  
pp. 1067-1071
Author(s):  
Zhen Bin Gao

This paper presents an active vibration control scheme for uncertain structural system. The state feedback controller is designed in term of Hinf robust control theory and the optimal solu- tion is obtained by using LMI convex optimal technique. A numerical example of three-degree-of- freedom system is taken to verify the proposed approach.The simulations demonstrate the effective- ness and feasibility.


2019 ◽  
Vol 25 (21-22) ◽  
pp. 2784-2798 ◽  
Author(s):  
D Williams ◽  
H Haddad Khodaparast ◽  
S Jiffri ◽  
C Yang

Unwanted vibrations are a common occurrence within structures and systems, and often pose a threat to their integrity or functionality. This research aims to seek a solution to attenuate the vibrations experienced within a link of a system using active vibration control with piezoelectric patches as actuators, whilst avoiding the use of large and expensive equipment which would contravene with the common objective of maintaining the smallest mass possible of the system. Previous research has employed large and expensive equipment as the controller, with sensors often only being able to measure the vibrations of the structure along one axis; this research aims to address these issues. The choice of utilizing the small, lightweight, and low-cost Raspberry Pi 3 combined with petite, mountable sensors and actuators was made based upon the greater practicality that the controller, sensors, and actuators exhibit, allowing for their use in a wide variety of applications. An analytical model of the structure was created based on Euler–Bernoulli beam theory and validated through the modal parameters and the frequency response obtained from a finite element model and experimental data. A controller was then designed and applied to the analytical model to attenuate the vibrations along the link, and then the same design was implemented within the Raspberry Pi 3, and experimental studies were carried out. The introduction and effectiveness of a purposeful time delay within the controller was explored within the experimental and analytical studies, with the intention of counteracting unfavorable results produced by the control system. The results of the experiment proved the control design to be effective for a range of frequencies that included the first natural frequency of the link, and validated the analytical model including the control design.


Sign in / Sign up

Export Citation Format

Share Document