A Novel Enhanced-Majority-Voter Universal Gate in Quantum Dot Cellular Automata with Energy Dissipation Analysis

2017 ◽  
Vol 9 (3) ◽  
pp. 03034-1-03034-7 ◽  
Author(s):  
S. Umira ◽  
◽  
R. Qadri ◽  
Z. A. Bangi ◽  
M. Tariq Banday ◽  
...  
2018 ◽  
Vol 9 (4) ◽  
pp. 2641-2648 ◽  
Author(s):  
Md. Abdullah-Al-Shafi ◽  
Ali Newaz Bahar ◽  
Md. Ahsan Habib ◽  
Mohammad Maksudur Rahman Bhuiyan ◽  
Firdous Ahmad ◽  
...  

Data in Brief ◽  
2017 ◽  
Vol 10 ◽  
pp. 557-560 ◽  
Author(s):  
Ali Newaz Bahar ◽  
Mohammad Maksudur Rahman ◽  
Nur Mohammad Nahid ◽  
Md. Kamrul Hassan

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sankit Kassa ◽  
Prateek Gupta ◽  
Manoj Kumar ◽  
Thompson Stephan ◽  
Ramani Kannan

Purpose In nano-scale-based very large scale integration technology, quantum-dot cellular automata (QCA) is considered as a strong and capable technology to replace the well-known complementary metal oxide semiconductor technology. In QCA technique, rotated majority gate (RMG) design is not explored greatly, and therefore, its advantages compared to original majority gate are unnoticed. This paper aims to provide a thorough observation at RMG gate with its capability to build robust circuits. Design/methodology/approach This paper presents a new methodology for structuring reliable 2n-bit full adder (FA) circuit design in QCA utilizing RMG. Mathematical proof is provided for RMG gate structure. A new 1-bit FA circuit design is projected here, which is constructed with RMG gate and clock-zone-based crossover approach in its configuration. Findings A new structure of a FA is projected in this paper. The proposed design uses only 50 number of QCA cells in its implementation with a latency of 3 clock zones. The proposed 1-bit FA design conception has been checked for its structure robustness by designing various 2, 4, 8, 16, 32 and 64-bit FA designs. The proposed FA designs save power from 46.87% to 25.55% at maximum energy dissipation of circuit level, 39.05% to 23.36% at average energy dissipation of circuit-level and 42.03% to 37.18% at average switching energy dissipation of circuit level. Originality/value This paper fulfills the gape of focused research for RMG with its detailed mathematical modeling analysis.


2018 ◽  
Vol 8 (3) ◽  
pp. 30 ◽  
Author(s):  
Subhash Pidaparthi ◽  
Craig Lent

We calculate the excess energy transferred into two-dot and three-dot quantum dot cellular automata systems during switching events. This is the energy that must eventually be dissipated as heat. The adiabaticity of a switching event is quantified using the adiabaticity parameter of Landau and Zener. For the logically reversible operations of WRITE or ERASE WITH COPY, the excess energy transferred to the system decreases exponentially with increasing adiabaticity. For the logically irreversible operation of ERASE WITHOUT COPY, considerable energy is transferred and so must be dissipated, in accordance with the Landauer Principle. The exponential decrease in energy dissipation with adiabaticity (e.g., switching time) distinguishes adiabatic quantum switching from the usual linear improvement in classical systems.


Sign in / Sign up

Export Citation Format

Share Document