scholarly journals DOES CHRYSANTHEMUM DISPLAY AN ENDOGENOUS CIRCADIAN RHYTHM OF STEM ELONGATION?

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1077f-1077
Author(s):  
Jason Tutty ◽  
Peter Hicklenton

The rate of internodal extension of chrysanthemum (Dendranthema grandiflora Tzvelev. cv. Envy) under various temperature and photoperiod conditions was studied to determine whether reproducible diurnal patterns of growth existed and whether any such patterns conformed to an endogenous circadian rhythm. Stem growth was monitored continuously by means of linear displacement voltage transducers. At constant temperature and under 11 h light/13 h dark photoperiod, stem elongation followed a clearly defined pattern consisting of a peak in rate immediately after the dark to light transition and then a gradual decline until the start of the dark period. During darkness, elongation rate increased and reached a maximum approximately 8 hours after the light to dark transition. This pattern differed when light period temperature was either above or below dark period temperature, but these patterns were also highly reproducible. When plants were subjected to continuous light at constant temperature, the rhythm of stem elongation initially showed a periodicity of approximately 27 hours. After 2 or 3 diurnal cycles the rhythm was less distinct and the rate became essentially constant. Furthermore, the interruption of a long period of continuous light with a 13 h dark period did not restore the rhythm. These findings do not support the existence of an endogenous circadian rhythm of stem elongation. Diurnally-cued rhythms do, however, exist and can be modified by temperature.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1077F-1077
Author(s):  
Jason Tutty ◽  
Peter Hicklenton

The rate of internodal extension of chrysanthemum (Dendranthema grandiflora Tzvelev. cv. Envy) under various temperature and photoperiod conditions was studied to determine whether reproducible diurnal patterns of growth existed and whether any such patterns conformed to an endogenous circadian rhythm. Stem growth was monitored continuously by means of linear displacement voltage transducers. At constant temperature and under 11 h light/13 h dark photoperiod, stem elongation followed a clearly defined pattern consisting of a peak in rate immediately after the dark to light transition and then a gradual decline until the start of the dark period. During darkness, elongation rate increased and reached a maximum approximately 8 hours after the light to dark transition. This pattern differed when light period temperature was either above or below dark period temperature, but these patterns were also highly reproducible. When plants were subjected to continuous light at constant temperature, the rhythm of stem elongation initially showed a periodicity of approximately 27 hours. After 2 or 3 diurnal cycles the rhythm was less distinct and the rate became essentially constant. Furthermore, the interruption of a long period of continuous light with a 13 h dark period did not restore the rhythm. These findings do not support the existence of an endogenous circadian rhythm of stem elongation. Diurnally-cued rhythms do, however, exist and can be modified by temperature.


1998 ◽  
Vol 25 (2) ◽  
pp. 183 ◽  
Author(s):  
O.M. Heide ◽  
R.W. King ◽  
L.T Evans

Our earlier experiments on flowering in the short day plant Pharbitis nil involved far- red/dark (FR/D) interruptions of 90 min duration at various times during a continuous light, constant temperature period before a single inductive dark period. They revealed a rhythm with a period of 12 h, hence semidian. We concluded that the phasing of this semidian rhythm determined the length of darkness required for floral induction. This conclusion has since been challenged so we sought other pretreatments which reveal the semidian rhythm. Interruptions at 12°C–17°C for 45–90 min at various times prior to the inductive dark period were as effective as FR/D in eliciting the semidian rhythm, with significant effects on flowering persisting for at least three cycles in constant conditions in continuous light. The rhythmic response to 12°C pretreatments was 3 h out of phase with that to FR/D pretreatments. Flowering responses to the semidian rhythm exposed by 12°C pretreatments were additive to and independent of those to a circadian rhythm. Some evidence was obtained of reversal of the inhibition or promotion of flowering by FR/D or 12°C by exposure immediately afterwards to the other pretreatment at times of their opposite effect. Pretreatments at 12°C, like those with FR/D, either reduced (if promotive) or extended (if inhibitory) the length of the dark period required for floral induction in this short day plant.


1996 ◽  
Vol 271 (3) ◽  
pp. R579-R585 ◽  
Author(s):  
S. Honma ◽  
Y. Katsuno ◽  
K. Shinohara ◽  
H. Abe ◽  
K. Honma

Extracellular concentrations of glutamate and aspartate were measured in the vicinity of rat suprachiasmatic nucleus (SCN) by means of in vivo microdialysis. The concentrations of both excitatory amino acids (EAAs) were higher during the dark phase than during the light under the light-dark cycle, showing pulsatile fluctuations throughout the day. When rats were released into the complete darkness, the 24-h pattern in the aspartate continued for at least one cycle, whereas that in the glutamate disappeared. The nocturnal increases in the EAA levels were not due to the increase of locomotor activity during the nighttime, because the 24-h rhythms were also detected in animals under urethan anesthesia. The patterns of extracellular EAA levels were changed when rats were released into the continuous light. Circadian rhythm was not detected in the glutamate, whereas the 24-h pattern was maintained in the aspartate with the levels increased to various extents. A 30-min light pulse given either at zeitgber time (ZT) 1 or ZT 13 elevated the EAA levels during the latter half of the light pulse, except glutamate by a pulse at ZT 1. The extracellular EAA levels in the vicinity of the rat SCN showed the circadian rhythm with a nocturnal peak and increased in response to the continuous light and a brief light pulse. The aspartate level is considered to be regulated by the endogenous circadian rhythm, but the glutamate levels seems to be modified by the light-dark cycle.


2000 ◽  
Vol 125 (3) ◽  
pp. 383-389
Author(s):  
Pauline Helen Kaufmann ◽  
Robert J. Joly ◽  
P. Allen Hammer

The difference between night and day temperature (DIF = day - night temperature) has been shown to affect plant height. A positive DIF (+DIF), cooler night than day temperature, increases stem elongation while a negative DIF (- DIF), warmer night than day temperature, decreases stem elongation. The physiological mechanism underlying the growth response to DIF is not understood, however, and the effects of day/night temperature differentials on root permeability to water and root elongation rate have not been studied. The objective of this study was to describe how +DIF and -DIF temperature regimes affect leaf water relations, root water flux (Jv), root hydraulic conductivity (Lp), and root elongation rates of `Boaldi' chrysanthemum [Dendranthema ×grandiflora Kitam. `Boaldi' (syn. Chrysanthemum ×morifolium Ramat.)] plants over time. Leaf turgor pressure (ψp) was 0.1 to 0.2 MPa higher in plants grown in a +6 °C DIF environment throughout both the light and dark periods, relative to those in a -6 °C DIF environment. Jv differed markedly in roots of plants grown in +DIF vs. -DIF environments. Rhythmic diurnal patterns of Jv were observed in all DIF treatments, but the relative timing of flux minima and maxima differed among treatments. Plants grown in positive DIF regimes exhibited maximum root flux at the beginning of the light period, while those in negative DIF environments had maximum root flux during the first few hours of the dark period. Plants grown in +DIF had significantly higher Lp than -DIF plants. Plants grown in +DIF and -DIF environments showed differences in the diurnal rhythm of root elongation. During the dark period, +DIF plants exhibited minimal root elongation rates, while -DIF plants exhibited maximal rates. During the light period, the converse was observed. In -DIF temperature regimes, periods of rapid root elongation coincided with periods of high Jv. Results of this study suggest that negative DIF environments lead to leaf turgor reductions and markedly alter diurnal patterns of root elongation. These changes may, in turn, act to reduce stem elongation.


1962 ◽  
Vol 53 (2) ◽  
pp. 417-436 ◽  
Author(s):  
W. A. L. David ◽  
B. O. C. Gardiner

The work described in this paper forms the final part of an investigation into the biology and breeding of Pieris brassicae (L.) in captivity and concerns the larvae and the pupae.The larvae of the Cambridge stock used in this investigation were found to pass through five instars in the course of their development at temperatures between 12·5 and 30°C. At the lower temperature, development was completed in 46·5 days and at the higher temperature in 11 days.The average width of the head capsules in each instar was not affected by the temperature at which the larvae were reared, it showed little variation, and it never overlapped with that of the preceding or ensuing instar and, therefore, provides a certain way of determining the instar of any larva.At 20°C., isolated larvae and larvae kept in crowded cultures completed their development in approximately the same time—19·6 and 18·8 days, respectively.The average consumption of food during the whole larval period was determined in two experiments, in which it was found to be 1·42 and 1·29 g. of fresh leaves per g. of larva per day, respectively.The duration of the pupal period ranged from 7·5 days at 30°C. to about 40 days at 12·5°C.The adults showed a definite diel rhythm of emergence. When kept at a constant temperature, with a photoperiod from 6 a.m. to 10 p.m., nearly all the insects emerged during the dark period and that immediately following it—actually between the hours of 1 a.m. and 9 a.m. If the photoperiod is displaced 12 hours, the emergence is also displaced by the same amount, to correspond with the new dark period. If, instead of keeping the temperature constant, with the photoperiod 6 a.m. to 10 p.m., it is allowed to fluctuate, as it does naturally in June, the emergence is delayed and instead of occurring in darkness and the early hours of the morning as it does at a constant temperature, it takes place mainly during the morning and the afternoon. When insects, which have been reared at a constant temperature and a photoperiod from 6 a.m. to 10 p.m., are allowed to emerge at a constant temperature, in continuous light, there is very little evidence of a diel rhythm of eclosion but if the insects are kept in continuous darkness they show a definite rhythm of emergence. If the pupae are kept in constant light but the temperature is allowed to fluctuate, most of the adults emerge during the warmer period of the cycle.Diapause in the pupa of P. brassicae is mainly determined by the photoperiod and the temperature during the larval stages. At 20°C., larvae reared in continuous darkness do not form diapause pupae; as the daily photoperiod increases, the percentage of diapause pupae formed also increases until, at a photoperiod of 12 hours, only diapause pupae are formed. Beyond this point the percentage of diapause pupae again declines until, with a photoperiod of about 18 hours, only non-diapause pupae are formed. At higher temperatures similar trends are observed but lower percentages of diapause pupae are formed at all photoperiods.In P. brassicae there is no evidence that a short, sharply defined period of a day or two exists in the course of the life of the larvae during which the photoperiod operates to influence diapause.Non-diapause pupae produced from larvae reared in continuous darkness and from larvae reared in long days (over 15 hours' light) appear to contain a growth-promoting hormone capable of causing the emergence of diapause pupae.


1978 ◽  
Vol 76 (1) ◽  
pp. 135-144 ◽  
Author(s):  
C. E. MCCORMACK ◽  
RAJAGOPALA SRIDARAN

SUMMARY In order to determine whether the timing of ovulation in rats was controlled by an endogenous circadian rhythm, the hour of ovulation was determined by observing tubal ova during laparotomy in adult rats exposed to full animal room illumination (150 lux) during daily photoperiods of 14 h (full LD), continuous 150 lux illumination (full LL), daily dim (0·2 lux) photoperiods of 14 h (dim LD), continuous 0·2 lux illumination (dim LL) or continuous darkness (DD). Rats in all groups except those exposed to full LL continued normal cyclic ovulation. By the second oestrous cycle, most rats in the full LL group failed to ovulate, even though they showed characteristic cyclic changes in the vaginal smear pattern. The hour at which ovulation occurred was similar in rats exposed to full LD, dim LD or DD but was delayed in rats exposed to full LL or dim LL; the longer the period of exposure, the greater was the delay. For a given length of exposure, ovulation was delayed more in full LL than in dim LL. The full LL used in this study produced persistent vaginal oestrus within 40 days, whereas the dim LL did not. The delayed ovulation in rats exposed to dim LL was associated with a delayed preovulatory surge of LH. These results are consistent with the hypothesis that the timing of the preovulatory surge of LH and ovulation are controlled by an endogenous circadian rhythm, which in most rats has a periodicity in continuous light of slightly longer than 24 h.


1965 ◽  
Vol 43 (7) ◽  
pp. 825-853 ◽  
Author(s):  
Bruce G. Cumming ◽  
Sterling B. Hendricks ◽  
H. A. Borthwick

Flowering of Chenopodium rubrum L., selection 374, was examined with respect to an endogenous circadian rhythm, the state of phytochrome, and the result of changing the form of phytochrome during a single dark period of 2 to 96 hours interrupting continuous light. Darkness was imposed either 4 or 5 days after seeds were placed on moist filter paper in Petri dishes.The following working hypothesis, which is partly retrospective, is projected to explain the main features of the experimental results. Flowering is controlled by a product of the enzymatic action of the far-red absorbing form of phytochrome (Pfr) on a single but unknown substrate. In acting, Pfr finally reverts to the inactive red-absorbing form of phytochrome (Pr) or is changed from the Pfr form in some other way. The available substrate, if not utilized by Pfr action, is soon depleted by other reactions. The substrate for Pfr action is low during the skotophile but high during the photophile phases. The significant time for phasing is the beginning of darkness. The initial substrate supply appears to be derived from the preceding light period but some time in the region of the 9th to 12th hour of darkness a significant rhythmic change of substrate starts up. The dependence of flowering on the time that darkness is interrupted by light is directly related to a rhythmic change in the optimum Pfr level required for the processes leading to flowering.The role of the endogenous rhythm in flowering under natural conditions is questioned. Similarities that are shown in the control of flowering, whether the display is governed by an endogenous rhythm or by a daily photoperiodic cycle, indicate that phytochrome acts as a "pacemaker". It is suggested that the distinct ecotypic populations of C. rubrum that differ in flowering response have dissimilar levels and rates of supply of substrate for phytochrome action. In C. rubrum-374, complete reversion or loss of Pfr does not occur during a long dark period of 72 hours at 20 °C, but Pfr does decrease to low levels.A hydrodynamic system is discussed as an analogy to rhythmic flowering response.


2021 ◽  
Author(s):  
Yang Yang ◽  
Wanwan Han ◽  
Aijia Zhang ◽  
Mindie Zhao ◽  
Wei Cong ◽  
...  

Abstract Corticotropin-releasing hormone (CRH), the major secretagogue of the hypothalamic-pituitary-adrenal (HPA) axis, is intricately intertwined with the clock genes to regulate the circadian rhythm of various body functions. N6-methyladenosine (m6A) RNA methylation is involved in the regulation of circadian rhythm, yet it remains unknown whether CRH expression and m6A modification oscillate with the clock genes in chicken hypothalamus and how the circadian rhythms change under chronic stress. Here, we show that chronic exposure to corticosterone (CORT) eliminated the diurnal patterns of plasma CORT and melatonin levels in the chicken. The circadian rhythms of clock genes in hippocampus, hypothalamus and pituitary are all disturbed to different extent in CORT-treated chickens. The most striking changes occur in hypothalamus in which the diurnal fluctuation of CRH mRNA is flattened, together with mRNA of other feeding-related neuropeptides. Interestingly, hypothalamic m6A level oscillates in an opposite pattern to CRH mRNA, with lowest m6A level after midnight (ZT18) corresponding to the peak of CRH mRNA before dawn (ZT22). CORT diminished the circadian rhythm of m6A methylation with significantly increased level at night. Further site-specific m6A analysis on 3’UTR of CRH mRNA indicates that higher m6A on 3’UTR of CRH mRNA coincides with lower CRH mRNA at night (ZT18 and ZT22). Our results indicate that chronic stress disrupts the circadian rhythms of CRH expression in hypothalamus, leading to dysfunction of HPA axis in the chicken. RNA m6A modification is involved in the regulation of circadian rhythms in chicken hypothalamus under both basal and chronic stress conditions.


Botanica Acta ◽  
1996 ◽  
Vol 109 (5) ◽  
pp. 422-426 ◽  
Author(s):  
U. Lüttge ◽  
T. E. E. Grams ◽  
Bettina Hechler ◽  
B. Blasius ◽  
F. Beck

Sign in / Sign up

Export Citation Format

Share Document