scholarly journals Technical Feasibility of Pneumatic Control on Colorado Potato Beetle

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 828F-828
Author(s):  
Benolt Lacasse ◽  
C. Laguë ◽  
S. Yelle ◽  
P.M. Roy ◽  
M. Khelifi

A front-mounted prototype designed to pneumatically remove Colorado potato beetles (CPB) from potato plants was tested in the field. Effects of different combinations of airflow velocities, nozzle widths, and travel speeds were investigated. Results showed that capture and dislodging of CPBs were better for adults and big larvae (L3 & L4). On the other hand, neither the airflow width and velocity nor the travel speed affected significantly the dislodging and the collection of small larvae. Field trials on the removal of larvae under the effect of different travel speeds showed that, the slower the prototype moved, the better was the collection of L3-L4 larvae. This study demonstrates the potential of pneumatic control of adult and L3-L4 CPBs.

2021 ◽  
Vol 37 (4) ◽  
pp. 645-651
Author(s):  
Saad Almady ◽  
Mohamed Khelifi

Highlights A pneumatic prototype machine to control the Colorado potato beetle (CPBs) was successfully designed, built, and tested in a potato field under real conditions. The pneumatic prototype machine is effective in dislodging CPB larvae from potato plants. ABSTRACT . The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is a real threat to potato crops when left uncontrolled. This insect pest is hard to control because it develops resistance to most chemical insecticides. To date, several alternatives including chemical, biological, and physical methods have been used to control CPB populations but have proven to be ineffective on their own. So far, the most reliable method at short and medium scales has been the use of chemicals, i.e., spraying insecticides onto potato plants at regular intervals throughout the life cycle of the CPB. However, the overuse of chemicals due to the resistance developed by the CPB can lead to serious health and environmental problems. The use of a pneumatic method to control the CPB seems to be a viable alternative compared to the use of chemicals. For this purpose, this research focused on engineering a pneumatic control device that could allow farmers to reduce their reliance on chemical insecticides. A pneumatic prototype machine using positive air pressure to dislodge CPBs from potato plant foliage was designed and built at the Department of Soils and Agri-Food Engineering of Université Laval. This prototype was tested in the field using three airflow velocities (31, 35, and 38 m/s) and two travel speeds (5 and 6 km/h). The results indicated that the airflow velocity and travel speed have no significant impact on dislodging the CPB (p = 0.0548 and 0.7033, respectively). However, the interaction between airflow velocities and the development stages of the CPB had a significant effect on dislodging the CPB (p = 0.0194). Overall, the most adequate airflow velocity that resulted in removing most of the CPB larvae from potato leaves was 35 m/s. Obtained results indicate that this pneumatic prototype machine could be efficiently used to control the CPB. However, extensive testing is required to confirm obtained results and investigate the effects of the pneumatic control on both the potato plant growth and the yield compared to other control means. Keywords: Airflow velocity, Colorado potato beetle, Pneumatic control, Potato, Travel speed.


2021 ◽  
Vol 64 (6) ◽  
pp. 2035-2044
Author(s):  
Saad Almady ◽  
Mohamed Khelifi

HighlightsA prototype pneumatic machine used to control the Colorado potato beetle (CPB) had no effect on potato plant growth.Yields in pneumatic treatment plots were comparable to those of control plots treated with a biological insecticide.Pneumatic control of the CPB could be an alternative to reduce reliance on chemical insecticides in potato fields.Abstract. The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is the major insect pest of potato plants. Currently, the most effective method for controlling the CPB is to apply chemical insecticides throughout its lifecycle. However, the CPB has the ability to resist most chemical insecticides. Control of this insect pest has therefore become extremely difficult, prompting researchers to explore effective alternatives. The use of pneumatic methods to control the CPB is a promising alternative to chemical means. The objective of this study was to develop an effective pneumatic control method for the CPB to reduce the reliance on chemical insecticides in potato fields. In this context, a prototype pneumatic machine was designed and built. The prototype uses positive air pressure to dislodge CPBs from potato foliage, deposit them on the ground between the rows, and crush them. The effects of three airflow velocities (45, 50, and 55 m s-1) and two tractor travel speeds (5 and 6 km h-1) on CPB control, plant growth, and tuber yield were investigated in potato plots. Overall, the results showed no significant differences in yield between treatments (p = 0.3268), indicating that the yield of potato plants treated with the prototype was comparable to that of plants treated with a biological insecticide (Entrust). In addition, the prototype did not have any negative effects on plant growth. This suggests that the prototype could be safely and efficiently used in potato fields to control the CPB. The success of this innovative control method could greatly contribute to reducing the use of chemical insecticides to control the CPB. Keywords: Airflow velocity, Leptinotarsa decemlineata (Say), Pneumatic control, Potato, Travel speed.


1989 ◽  
Vol 121 (10) ◽  
pp. 841-851 ◽  
Author(s):  
John R. Ruberson ◽  
Maurice J. Tauber ◽  
Catherine A. Tauber ◽  
Ward M. Tingey

AbstractResistant potato plants influenced the parasitoid Edovum puttleri Grissell directly, as well as indirectly through eggs of the parasitoid’s host, the Colorado potato beetle, Leptinotarsa decemlineata (Say). In the field, E. puttleri parasitized more egg masses on plants with no glandular trichomes or with glandular trichomes bearing only enclosed droplets of exudate than on plants with two types of glandular trichomes (one with exposed droplets and the other bearing enclosed droplets). Trichomes with exposed droplets entrapped numerous parasitoids. Although rearing L. decemlineata on resistant plants influenced many of the beetle’s life-history traits, it did not affect the suitability of their eggs for development and survival of preimaginal E. puttleri. However, eggs from L. decemlineata that were reared on resistant potato plants reduced the longevity of the parasitoids and also reduced the number of hosts (eggs) killed by parasitoids.


Plant Science ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 373-380 ◽  
Author(s):  
Sébastien De Turck ◽  
Philippe Giordanengo ◽  
Anas Cherqui ◽  
Corinne Ducrocq-Assaf ◽  
Brigitte S Sangwan-Norreel

2005 ◽  
Vol 83 (2) ◽  
pp. 89-98 ◽  
Author(s):  
C. Noronha ◽  
G.M. Duke ◽  
M.S. Goettel

The phenology and damage potential of the Colorado potato beetle (Leptinotarsa decemlineata) were studied in the potato producing area in southern Alberta. Experimental plots were established at Lethbridge in 1998, 1999 and 2000, and at Vauxhall in 1998 and 1999. At each site, one plot was protected against the beetle by application of insecticides while the other was "unprotected." Natural potato beetle populations quickly colonized unprotected plots each year. Overwintered adults appeared in plots by mid June with mean densities reaching between 0.3 and 0.6 per plant. Eggs were laid on young plants with mean densities reaching two egg masses per plant by late June. Maximum larval densities reached 9.5 per plant for each of 1st, 2nd and 3rd instars and 14 per plant for 4th instars. Maximum density for newly emerged adults was 57 per plant in mid-July at the 2000 Lethbridge unprotected plot. Defoliation was very low at the beginning of the season but increased sharply when 3rd and 4th instar populations peaked and continued to rise as new adults emerged. Maximum defoliation occurred at the Lethbridge plot in 2000 with 100% defoliation by 10 August. Total yields in all unprotected plots ranged from 10 to 40% lower than in the protected plots. Mean density of overwintering adults within potato plots was 76 beetles m-2 with a maximum of 232 m-2. Mean overwintering mortality was 22% and mean depth of overwintering adults was 12 cm, with 63% of the beetles collected at depths ≤ 10 cm. Our results indicate that the phenology of the beetle is similar to that reported in areas where population buildups were rapid and devastating soon after insecticide resistant populations appeared. Consequently the beetle must be considered as a serious threat to potato production in southern Alberta.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1030
Author(s):  
Vladimír Půža ◽  
Jiří Nermuť ◽  
Jana Konopická ◽  
Oxana Skoková Habuštová

Colorado potato beetle Leptinotarsa decemlineata is among the most destructive pests of potatoes quickly developing resistance to traditional insecticides. In the present study, we tested the effect of various species and strains of entomopathogenic nematodes on CPB adults, and subsequently, the most effective nematodes were applied alone and in combination with entomopathogenic fungus B. bassiana in pots with potato plants and in the field and their effect on the number of emerging adults was evaluated. In the experimental infections, both the nematode invasion and pathogenicity were variable, and, in several strains, the mortality reached 100%. In pot experiments, soil application of nematodes S. carpocapsae 1343 and S. feltiae Jakub and fungus significantly decreased numbers of emerging CPB adults, while, after the application on leaves, only fungal treatment was effective. The field application of fungus B. bassiana significantly decreased the number of emerging CPB adults in comparison to control sites by ca. 30% while the effect of nematodes and the nematodes–fungus combination was not significant. In conclusion, we demonstrate the necessity of thorough bioassays to select the most effective nematode strains. Entomopathogenic nematodes have the potential to effectively decrease the emergence of CPB adults, but further research is needed to improve the effectiveness in the field.


Sign in / Sign up

Export Citation Format

Share Document