overwintering mortality
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 0)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262561
Author(s):  
Olivia Wetsch ◽  
Miranda Strasburg ◽  
Jessica McQuigg ◽  
Michelle D. Boone

Emerging infectious diseases are increasing globally and are an additional challenge to species dealing with native parasites and pathogens. Therefore, understanding the combined effects of infectious agents on hosts is important for species’ conservation and population management. Amphibians are hosts to many parasites and pathogens, including endemic trematode flatworms (e.g., Echinostoma spp.) and the novel pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Our study examined how exposure to trematodes during larval development influenced the consequences of Bd pathogen exposure through critical life events. We found that prior exposure to trematode parasites negatively impacted metamorphosis but did not influence the effect of Bd infection on terrestrial growth and survival. Bd infection alone, however, resulted in significant mortality during overwintering—an annual occurrence for most temperate amphibians. The results of our study indicated overwintering mortality from Bd could provide an explanation for enigmatic declines and highlights the importance of examining the long-term consequences of novel parasite exposure.


2021 ◽  
pp. 104694
Author(s):  
Jacob T. Wittman ◽  
Brian H. Aukema ◽  
Jian J. Duan ◽  
Robert C. Venette

2021 ◽  
Vol 67 (2) ◽  
pp. 108-112
Author(s):  
Márton Paulin ◽  
Anikó Hirka ◽  
Mariann Csepelényi ◽  
Ágnes Fürjes-Mikó ◽  
Imola Tenorio-Baigorria ◽  
...  

Abstract The North American oak lace bug (Corythucha arcuata) was first discovered in Europe (Norhern Italy) in 2000. It started a rapid area expansion in the last decade and has been reported in 20 countries so far. Almost all European oaks are suitable hosts. On top of the host availability, abiotic factors like weather/climate may also have a decisive impact on its further spread and future outbreaks. We conducted a simple field survey within three years, at five locations to estimate the overwintering mortality of the species. Our results suggest that not even a relatively harsh winter (as 2016/2017) caused severe mortality in the overwintering populations. The average mortality of the nine year/location combinations was 30.6% (range 9.1–58.5%). Based on this, the low winter temperature is unlikely to restrict its further spread, therefore continuing area expansion can be predicted.


2021 ◽  
Author(s):  
Skye Butterson ◽  
Amanda D Roe ◽  
Katie Elizabeth Marshall

High latitude insect populations must cope with extreme conditions, particularly cold temperatures. Insects use a variety of cold hardiness mechanisms to withstand this temperature stress, and these can drive geographic distributions through overwintering mortality. The degree of cold hardiness can be altered by two evolved responses: phenotypic plasticity and local adaptation. Phenotypic plasticity can occur within or between generations (transgenerational plasticity; TGP), and local adaptation can evolve through directional selection in response to regional climatic differences. We used the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) as a model to explore the role that variable winter temperatures play in inducing two aspects of plasticity in cold hardiness: TGP and local adaptation in phenotypic plasticity. This species is one of the most destructive boreal forest pests in North America, therefore accurately predicting overwintering survival is essential for effective management. While we found no evidence of TGP in cold hardiness, there was a long-term fitness cost to larvae that experienced repeated cold exposures. We also found evidence of local adaptation in both seasonal and short-term plasticity of cold hardiness. These findings provide evidence for the importance of phenotypic plasticity and local adaptation when modelling species distributions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martina Calovi ◽  
Christina M. Grozinger ◽  
Douglas A. Miller ◽  
Sarah C. Goslee

AbstractHoney bees are crucial pollinators for agricultural and natural ecosystems, but are experiencing heavy mortality in North America and Europe due to a complex suite of factors. Understanding the relative importance of each factor would enable beekeepers to make more informed decisions and improve assessment of local and regional habitat suitability. We used 3 years of Pennsylvania beekeepers’ survey data to assess the importance of weather, topography, land use, and management factors on overwintering mortality at both apiary and colony levels, and to predict survival given current weather conditions and projected climate changes. Random Forest, a tree-based machine learning approach suited to describing complex nonlinear relationships among factors, was used. A Random Forest model predicted overwintering survival with 73.3% accuracy for colonies and 65.7% for apiaries where Varroa mite populations were managed. Growing degree days and precipitation of the warmest quarter of the preceding year were the most important predictors at both levels. A weather-only model was used to predict colony survival probability, and to create a composite map of survival for 1981–2019. Although 3 years data were likely not enough to adequately capture the range of possible climatic conditions, the model performed well within its constraints.


2020 ◽  
Vol 49 (6) ◽  
pp. 1455-1461
Author(s):  
B E Wilson ◽  
W H White ◽  
R T Richard ◽  
R M Johnson

Abstract The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), is the primary pest of sugarcane, Saccharum spp., in Louisiana. Spring populations are not considered economically damaging, but quantifying infestations can provide an indication of the spatial and temporal character of the damaging summer populations. Statewide surveys quantified the density of sugarcane tillers killed by D. saccharalis (deadhearts) from sugarcane fields across the state in spring from 2003 to 2020. Deadheart density varied greatly among years with a high of 1,318/ha in 2003 to a low of 0/ha in 2018. Linear regressions of the 3-yr rolling average showed declines in spring D. saccharalis populations and the percentage of acreage treated with insecticides over 17 yr. Weather factors including minimum winter temperatures and average spring temperatures were poor predictors of D. saccharalis populations. Only total precipitation in the month of April was positively correlated with numbers of deadhearts per hectare. Results suggest overwintering mortality is not a key factor influencing populations of the first generation of D. saccharalis in Louisiana. Total precipitation in the month of July was positively associated with percentage of treated acreage. Spring deadheart density was directly related to percentage of acreage treated with insecticides during the summer. Quantifying first-generation D. saccharalis populations by recording deadheart density can aid in predicting pest pressure later in the growing season.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 712
Author(s):  
David W. Onstad ◽  
Michael A. Caprio ◽  
Zaiqi Pan

Both Diabrotica virgifera virgifera LeConte and D. barberi Smith and Lawrence are among the most damaging insects impacting corn in North America. D. virgifera virgifera has also invaded Europe and has become an important pest in that region. Computer models have become an important tool for understanding the impact and spread of these important pests. Over the past 30 years, over 40 models have been published related to these pests. The focus of these models range from occupancy models (particularly for Europe), impact of climate change, range expansion, economics of pest management, phenology, to the evolution of resistance to toxins and crop rotation. All of these models share characteristics. We elaborate on the methods in which modelers have incorporated the biology of these pests, including density-dependence, movement, fecundity and overwintering mortality. We discuss the utility of both spatially-explicit, complex models and spatially-implicit, generational models and where each might be appropriate. We review resistance models that either explain past evolution to crop rotation, insecticides or insecticidal traits or attempt to predict the consequences of resistance management strategies.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 318
Author(s):  
Jiao Tang ◽  
Cuiyan Ma ◽  
Wei Shi ◽  
Xiao Chen ◽  
Zhiguang Liu ◽  
...  

Surveys of managed honey bee colony losses worldwide have become fundamental for engineering a sustainable and systematic approach to protect honey bees. Though China is a member of the world’s apiculture superpowers, the investigation of honey bee colony losses from Chinese government was not formally launched until recently. In this study, we investigated the colony winter losses of the western honey bee (Apis mellifera) of four consecutive years in 2013–2017 from 19 provinces in China, with a total of 2387 responding Chinese beekeepers (195 hobby beekeepers, 1789 side-line beekeepers, 403 commercial beekeepers) providing the records of overwintering mortality of honey bee colonies. The calculated colony losses were 8.7%, a relatively low mortality below the world average. There still exist considerable variations in total losses among provinces (ranging from 0.9% to 22.0%), years (ranging from 8.1% to 10.6%) and scales of apiaries (ranging from 7.5% to 10.0%). Furthermore, we deeply analyzed and estimated the effects of potential risk factors on the colonies’ winter losses, and speculated that the queen problems, the operation sizes and proportion of new queens are leading causes of the high honey bee colony mortality in China. More research and advanced technical methods are still required for correlation analysis and verification in future surveys of managed honey bee colony winter losses.


2017 ◽  
Vol 149 (4) ◽  
pp. 482-486 ◽  
Author(s):  
Michael I. Jones ◽  
Juli R. Gould ◽  
Melissa K. Fierke

AbstractSevere mortality (93%) of overwintering larvae of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was recorded in March 2016 from green ash, Fraxinus pennsylvanica Marshall (Oleaceae), in Syracuse, New York, United States of America. In contrast, larvae collected from the same area in January exhibited <1% mortality. A strong cold front moved across New York from 13 to 15 February 2016 with temperatures plunging to nearly −40 °C in some areas. In many regions of New York where A. planipennis is established, temperatures dropped well below the reported supercooling point of overwintering larvae. To evaluate whether the extreme cold was linked to extensive mortality of larvae, trees were sampled from four areas that experienced a gradient of minimum temperatures on 14 February 2016. Overwintering mortality varied from ⩽5% to 93% among regions, with lowest survival in the coldest regions. When excised from their galleries, dead larvae were discoloured with brown spots or had black necrotic tissue in the spiracles or foregut. This is the first report of extensive cold-related mortality for this species in North America and highlights the stochastic nature of climatic extremes on invasive species populations.


Sign in / Sign up

Export Citation Format

Share Document