scholarly journals In Vitro Rooting and Greenhouse Acclimatization of Veltheimia bracteata and V. capensis Shoots

HortScience ◽  
1996 ◽  
Vol 31 (7) ◽  
pp. 1229-1230 ◽  
Author(s):  
James R. Ault

Shoot initiation and multiplication were obtained in vitro from immature flower bud and leaf explants of Veltheimia bracteata Bak. `Lemon Flame' and from leaf explants of V. bracteata `Rosalba' cultured on a Murashige and Skoog (MS) medium supplemented with sucrose at 30 g•L–1, and either 8.87 μm BA plus 0.54 μm NAA or 8.87 μm BA plus 5.40 μm NAA. Shoot initiation and multiplication was obtained from a single leaf explant of Veltheimia capensis (L.) DC. on MS medium with 8.87 μm BA plus 0.54 μm NAA. Shoots of the three genotypes rooted on subculture to medium with 0.0, 4.14, or 8.29 μm K-IBA or 0.0, 4.46, or 8.92 μm K-NAA. Maximal rooting was 98% for V. bracteata `Lemon Flame', 95% for V. bracteata `Rosalba', and 98% for V. capensis, from medium with 4.46 μm KNAA. Rooted shoots were acclimatized for 3 to 4 weeks. Overall survival percentage was 69% for V. bracteata `Lemon Flame', 65% for V. bracteata `Rosalba', and 83% for V. capensis. Chemical names used: 6-benzyladenine (BA); potassium salt of indole-3-butyric acid (K-IBA); potassium salt of 1-naphthaleneacetic acid (K-NAA); 1-naphthaleneacetic acid (NAA).

HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 200-201 ◽  
Author(s):  
James R. Ault

Shoot tip and stem segment explants collected from greenhouse-maintained plants of Hymenoxys acaulis var. glabra were cultured in vitro for shoot initiation on a Murashige and Skoog (MS) medium supplemented with 30 g·L-1 sucrose, 2.5 μm BA, and 7 g·L-1 agar at a pH of 5.7. Unbranched shoot explants were subcultured to MS medium with 0.0, 0.5, 1, 2, 4 or 8 μm BA for shoot proliferation. A maximum of 10.3 shoots per explant was produced on the medium with 2.0 μm BA. Nonrooted shoots were subcultured to MS medium with 0.0, 0.5, 2, or 8 μm K-IBA for rooting. Maximum rooting was 90% on MS medium with 0.5 μm K-IBA. Rooted shoots were greenhouse-acclimatized for 10 days. Overall survival was 75%. Chemical names used: 6-benzyl adenine (BA); potassium salt of indole-3-butyric acid (K-IBA).


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1373-1377 ◽  
Author(s):  
Margarita Fraga ◽  
Mertxe Alonso ◽  
Marisé Borja

Meristem culture and/or thermotherapy were used for virus elimination from ornamental Phlox paniculata L. (`Blue Boy', `Orange perfection' and `Starfire') mother plants. Shoot tip, leaf, node and flower ovary explants collected from greenhouse-maintained virus free plants were cultured in vitro for shoot initiation. Adventitious shoot initiation was observed on Murashige and Skoog (MS) medium containing the cytokinin BA with or without the auxin NAA. The addition of 0.4 mg·L-1 thiamine, 0.4 mg·L-1 folic acid, and 40 mg·L-1 adenine sulfate to the MS medium did not improve the regeneration rate. Multiplication and rooting were genotype dependent. Blue Boy and Orange Perfection cultivars regenerated the maximum number of shoots from leaf explants. `Blue Boy' leaf explants from in vitro plants had a lower regeneration rate than explants from greenhouse plants. Cultivar `Starfire' had the highest shoot formation with open flower ovary explants and failed to regenerate from leaf explants. In vitro rooting of adventitious shoots in the presence of auxins (IAA, NAA, or IBA) with or without BA was less effective than ex vitro rooting. Chemical names used: 6-benzyladenine (BA); indole-acetic acid (IAA); indole-3-butyric acid (IBA); α-naphthaleneacetic acid (NAA).


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
K. Varutharaju ◽  
C. Soundar Raju ◽  
C. Thilip ◽  
A. Aslam ◽  
A. Shajahan

An efficient protocol for direct shoot organogenesis has been developed for the medicinal plantAerva lanata(L.) Juss. ex Schult. Regeneration was achieved from leaf segments of 20 days oldin vitroplantlets raised on Murashige and Skoog (MS) medium containing 0.25–2.0 mg L−1thiadiazuron (TDZ), 3% sucrose, and 0.8% agar. After 21 days of culture incubation, maximum number of shoot organogenesis (23.6 ± 0.16) was obtained on medium containing 1.0 mg L−1TDZ. The shoots were able to producein vitroflowers on medium containing 1.0 mg L−1TDZ in combination with 0.25–0.5 mg L−1  α-naphthaleneacetic acid (NAA). Histological observation showed that the epidermal cells of the leaf explants exhibited continuous cell division led to formation of numerous dome shaped meristematic protrusions and subsequently developed into adventitious shoots. Upon transfer of shootlets to half strength MS medium containing 1.0 mg L−1indole-3-butyric acid (IBA), around 86% of the regenerated shoots formed roots and plantlets. Rooted plants were hardened and successfully established in the soil at the survival rate of 92%. The regeneration protocol developed in this study provides an important method of micropropagation of this plant. Furthermore, this protocol may be used for a large scale production of its medicinally active compounds and genetic transformations for further improvement.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 407
Author(s):  
Yung-Ting Tsai ◽  
Kin-Ying To

Wedelia chinensis, belonging to the Asteraceae family, has been used in folk medicine in East and South Asia for the treatment of common inflammatory diseases and protection against liver toxicity. Previously, in vitro propagation through different tissue explants has been reported, including through nodal segments, axillary buds, and shoot tips, whereas leaf segments failed to proliferate. Here, we report on the in vitro propagation of W. chinensis by culturing young leaf explants in MS medium supplemented with 0.5 mg/L α-naphthaleneacetic acid (NAA), 0.75 mg/L thidiazuron (TDZ), 1 mg/L gibberellic acid (GA3), 3.75 mg/L adenine, 3% sucrose, and 0.8% agar at pH 5.8. Calli were observed in all explants derived from the youngest top two leaves, and the average percentage of shoot regeneration was 23% from three independent experiments. Then, several shoots were excised, transferred onto MS basal medium supplemented with 3% sucrose and 0.8% agar at pH 5.8, and cultured in a growth chamber for 1 to 2 months. Roots were easily induced. Finally, plantlets carrying shoots and roots were transferred into soil, and all of them grew healthily in a greenhouse. No morphological variation was observed between the regenerated plantlets and the donor wild-type plants. In addition, we also established root cultures of W. chinensis in culture medium (MS medium, 3 mg/L NAA, 3% sucrose, pH 5.8) with or without 0.8% agar. To the best of our knowledge, this is the first paper reporting plant regeneration from leaf explants in the herbal plant W. chinensis.


HortScience ◽  
1999 ◽  
Vol 34 (2) ◽  
pp. 353-354 ◽  
Author(s):  
James R. Ault ◽  
Kayri Havens

Shoot explants from actively growing, greenhouse-maintained plants of Baptisia `Purple Smoke' were cultured in vitro for shoot initiation on Murashige and Skoog (MS) basal medium containing vitamins and supplemented with 30 g·L–1 sucrose, 8.87 μm BA, and 4.14 μm K-IBA. All subsequent media were supplemented with 2.47 mm NaH2PO4 to enhance shoot growth. Single-node explants were subcultured for shoot multiplication on MS medium with either no plant growth regulator or with 2.22, 4.44, 8.87, 17.74, or 35.48 mm BA in combination with 0.0 or 4.14 μm K-IBA. Explants produced a maximum of 4.1 shoots on the medium with 2.22 μm BA. Shoots rooted on all concentrations of K-IBA (2.07, 4.14, 10.36, or 20.72 μm) and K-NAA (2.23, 4.46, 11.15, or 22.29 μm) tested. Maximum rooting was 100% on MS medium with 11.15 μm K-NAA; however, this treatment induced copious stem callusing. Rooted shoots were greenhouse-acclimatized for 2.5 weeks. Overall survival was 86%. For optimal rooting and subsequent acclimatization, treatment with 2.23 μm K-NAA is recommended; this resulted in 83% rooting and 87% acclimatization. Chemical names used: N6 benzyladenine (BA); potassium salt of indole-3-butyric acid (K-IBA); potassium salt of 1-naphthalene acetic acid (K-NAA).


HortScience ◽  
1995 ◽  
Vol 30 (6) ◽  
pp. 1304-1305 ◽  
Author(s):  
James R. Ault

Shoot formation was obtained from Lachenalia arbuthnotiae W.F. Barker, L. bulbifera (Cyrillo) Engl., and L. purpureo-coerulea Jacq. leaf tissue explants cultured on Murashige and Skoog (MS) medium supplemented with sucrose at 30 g·liter–1, 8.87 μm BA, and 0.44 μm K-NAA. Shoots of all three species rooted on subculture to MS medium supplemented with 0.0, 4.14, or 8.29 μm K-IBA or 0.0, 4.46, or 8.92 μm K-NAA. Maximum percent rooting was ≈81% from treatment with 4.14 μm K-IBA for L. arbuthnotiae and with 8.29 μm K-IBA for L. purpureo-coerulea; it was 59% from treatment with 8.92 μm K-NAA for L. bulbifera. Rooted and nonrooted shoots were acclimatized in a greenhouse. Survival of rooted plants was 93% for L. arbuthnotiae, 95% for L. bulbifera, and 94% for L. purpureo-coerulea. Survival of nonrooted shoots was 71% for L. arbuthnotiae and 91% for L. bulbifera. Chemical names used: 6-benzyladenine (BA); potassium salt of indole-3-butyric acid (K-IBA); potassium salt of 1-naphthaleneacetic acid (K-NAA).


2021 ◽  
Author(s):  
Xingmei Ai ◽  
Yonghui Wen ◽  
Chao Wang

Abstract Ardisia crenata var. bicolor is an ornamental shrub, owing to its declined wild population, recalcitrant seeds and few high-quality cuttings, the main objective of this study was to optimize an in vitro propagation protocol by using tip shoot and nodal segment as explants from senescent plant. Explants were sterilized and cultured on Muraghige and Skoog medium contained 1.0 mg·L-1 benzylaminopurine and 0.05 mg·L-1 1-naphthaleneacetic acid for shoot initiation. For shoot proliferation, explants were cultured on MS medium with 1.0 mg·L-1 BAP, 0.1 mg·L-1 NAA, and 0.5 mg·L-1 kinetin, and the proliferation coefficient were 3.1 and 2.5. Rooting was achieved by two explants in half-strength MS medium containing 0.5 mg·L-1 indole-3-butyric acid + 0.1 mg·L-1 or 0.2 mg·L-1 NAA, and 0.5 g·L-1 activated charcoal. The highest rooting rate were 72.7% and 65.1% with the highest mean number of roots (4.2 and 2.8, respectively). After acclimatization, 83.3% and 81.2% of plants were survived in the greenhouse. The plant can be rejuvenated via in vitro propagation and provide a reference for supplying the planting materials quickly with an uniform genotype.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamid Reza SABAGHI ◽  
Gholamreza SHARIFI-SIRCHI ◽  
Pejman AZADI ◽  
Mohammad Hossein AZIMI

ABSTRACT Callus induction and plant regeneration are important steps of in vitro plant breeding of ornamental plants. In this study, the effects of different combinations of plant growth regulators (PGRs), promoters, and minerals on callus induction and plant regeneration in different carnation cultivars were studied in a completely randomized design with three replications. For callus induction, 16 different combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BA), 1-naphthaleneacetic acid (NAA), and casein hydrolysate (CH) were studied using in vitro leaf explants. The Murashige and Skoog (MS) medium supplemented with 0.2 mg·dm-3 of 2,4-D and 200 mg·dm-3 of CH showed the highest frequency of callus induction. Among the cultivars, ‘Noblesse’ showed the highest rate of callus induction (91.67%). Regarding regeneration, BA, NAA, silver nitrate (AgNO3), and adenine hemisulfate (As) were used in ten different combinations. The ‘Cameron’, ‘Tabasco’, and ‘Noblesse’ cultivars with 95.24% regeneration percentage showed the highest rate of plant regeneration. Generally, in most cultivars, the highest regeneration rate and shoot number per explant were found in the MS medium supplemented with 3 mg·dm-3 of BA, 0.6 mg·dm-3 of NAA, 5 mg·dm-3 of AgNO3, and 40 mg·dm-3 of As. According to the results, the highest regeneration frequency was obtained when 40 mg·dm-3 of As was added to the medium. Finally, the flow cytometry analysis indicated that there were no significant differences between in vitro regenerated and control plants in terms of DNA ratios.


Author(s):  
Norizzah Jaafar SIDIK ◽  
Norhayati DAUD ◽  
Som Cit SINANG ◽  
Nurul Fazira OMAR

This study examined the efficiency of callus induction on optimum concentrations of NAA (a-naphthaleneacetic acid) and BAP (6-benzyladenine) from culturing stem and leaf explants of finger eggplant (Solanum sp.) and investigated the phytochemical constituents of callus tissue. Seeds were sterilized by using 3 and 5 % Clorox solution, which gave the highest number of survival seeds (100 %) and were grown in vitro plantlets. The highest frequency of callus induction (100.00 ± 0.00 %) was obtained from stems and leaf explants that were excised from in vitro plantlets. The stem explants cultured on MS medium consisted of 1.0 mg/L NAA + 1.0 mg/L BAP, giving the maximum mean callus fresh weight (0.14 ± 0.05 g). Meanwhile, the leaf explants cultured on MS medium consisted of  0.5 mg/L NAA + 2.0 mg/L BAP, generating the maximum mean callus fresh weight (0.48 ± 0.10 g). The highest frequency of callus induction (88.00 ± 1.60 %) was obtained in solidified MS medium supplemented with 0.5 mg/L NAA + 2.0 mg/L BAP, producing the maximum mean fresh weight of callus (1.54 ± 0.27 g) and dry weight (0.90 ± 0.01 g). The results of the Phytochemical screenings of callus and dried leaf extracts indicated the presence of alkaloids, flavonoids, terpenoids, and saponins.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1050E-1051
Author(s):  
Wenhao Dai ◽  
Victoria Jacques

Periwinkle, a perennial commonly used as a summer bedding plant, is known as the source of vinca alkaloids used to treat lymphocytic leukemia and Hodgkin's disease. It is also one of the natural hosts of many phytoplasma diseases, such as X-disease of major Prunus species, aster yellows, and ash yellows diseases. Therefore, periwinkle is an ideal plant species for phytoplasma disease research, such as disease transmission, species resistance, and resistant gene screening. Periwinkle tissue culture was established by incubating sterile seeds in hormone-free Murashige and Skoog (MS) medium. Plants were successfully regenerated from in vitro leaf tissues of periwinkle. Adventitious shoots were induced when leaf tissues were cultured on Murashige and Skoog (MS) medium or woody plant medium (WPM) supplemented with benzyladenine (BA) and naphthaleneacetic acid (NAA). Nearly 75% of leaf explants produced shoots in both media with 10–20 μm BA and 1 μm NAA. A mean of 4.3 shoots was produced from each explant cultured on WPM, whereas only 2 shoots were produced on MS medium under 16-h photoperiod. Leaf explants under dark treatment for 2 weeks produced big callus only, indicating that light is necessary for shoot formation. Most adventitious shoots were induced from the joint of leaf blade and petiole. In vitro shoots (>1.5 cm) were easily rooted in half-strength MS medium. Addition of NAA dramatically increased root number, with more than 20 roots being induced in 5 μm NAA medium. Rooted plants were transferred to potting medium and grown in a greenhouse.


Sign in / Sign up

Export Citation Format

Share Document