Effects of Cover Crops and Tillage on Sweet Corn Production

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 472A-472
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on `Merit' sweet corn in 1994, 1995, and 1996. Main plots received tillage or no-tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus inorganic N fertilization. The shoot N contents of vetch and mix cover crops ranged from 100 to 150 kg/ha, whereas N contents of rye were usually <50 kg/ha. In 1994 and 1995, vetch shoot N contents were 150 kg/ha, and corn yields following vetch were not significantly affected by addition of inorganic N fertilizer. In 1996, vetch N contents only equaled 120 kg/ha, and corn yields were significantly increased by addition of inorganic N. Supplemental N was also required to obtain maximum yields following mix and rye cover crops in all years, even though the N contents of vetch and mix cover crops were normally similar. Measurements of corn foliar N and available soil N were in agreement with the yield results. No-tillage did not significantly affect corn yields following vetch. However, no-till corn yields were reduced with rye (1995) and the mix (1995 and 1996) as a result of reduced corn plant population densities. Reliable tillage results were not obtained for 1994. It was concluded that a vetch cover crop could adequately supply N to sweet corn if vetch N content was at least 150 kg/ha. Sweet corn following rye or vetch/rye mix cover crops required additional N for optimal yields. Significant N in the mix cover crop was probably immobilized as the rye component decomposed. No-till sweet corn was grown successfully following vetch, but yields were often reduced with the mix or rye cover crops.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 669d-669
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. No significant effects of tillage on sweet corn yields were detected. Following corn not receiving inorganic N, vetch produced cover crop total N yields of 130 kg·ha–1 that were over three-times greater than those obtained with rye. Following rye winter covercrops, addition of ammonium nitrate to corn significantly (P < 0.05) increased corn yields and foliar N concentrations compared to treatments not receiving N. However, following vetch, corn yields and foliar N concentrations obtained without N fertilization equaled those obtained with N fertilization following rye or vetch. Available soil N was significantly (P < 0.05) greater following vetch compared to rye for ≈9 weeks after corn planting and peaked ≈4 weeks after planting. It was concluded that no-tillage sweet corn was successful and N fixed by vetch was able to sustain sweet corn production.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 892A-892
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment was conducted to examine effects of tillage and winter cover crops on sweet corn. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix. Nitrogen treatments consisted of either adding or not adding NH4NO3 at recommended rates. No significant effects of tillage on sweet corn yields were detected, although yields with tillage were slightly greater. Following rye winter cover crops, adding NH4NO3 to corn significantly (P ≤ 0.05) increased yields by 56% compared to treatments not receiving N. However, following vetch, corn yields obtained without N fertilization equaled those obtained with N fertilization following rye or vetch. It was concluded that 1) nontilled sweet corn was successful and 2) N2 fixed by vetch was able to sustain sweet corn production completely and was equivalent to a minimum of 70 kg N/ha.


2002 ◽  
Vol 12 (1) ◽  
pp. 118-125 ◽  
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

Effects of tillage, inorganic N, and winter cover crops on sweet corn (Zea mays) were examined in 1994, 1995, and 1996. Tillage treatments were tillage or no tillage, and N treatments were the addition of inorganic N at 0 (N0) or 200 (N+) kg·ha-1 (0 or 179 lb/acre). Winter cover crops included hairy vetch (Vicia villosa), winter rye (Secale cereale), and a vetch/rye biculture. In the N0, rye treatment, the soil was N deficient in 1994 and highly N deficient in 1995 and 1996. When vetch shoot N content was ≥150 kg·ha-1 (134 lb/acre) (1994 and 1995), addition of inorganic N did not increase corn yields, and it only increased corn foliar N concentrations by 8%. Reductions in corn yields (29%) and foliar N concentrations (24%) occurred when vetch shoot N content was only 120 kg·ha-1 (107 lb/acre) (1996) and inorganic N was not supplied. In 1994, the vetch/rye biculture supplied sufficient N for maximum corn yields, but addition of inorganic N increased yields by more than 50% in 1995 and 1996. Under tilled conditions, the vetch N contribution to corn appeared to equal (1996) or exceed (1994 and 1995) 82 kg·ha-1 (73 lb/acre) of N supplied as ammonium nitrate, whereas a mean value of 30 kg·ha-1 (27 lb/acre) was obtained for the biculture cover crop (1995 and 1996). No significant effects of tillage on sweet corn population densities were detected following vetch, but no-tillage significantly reduced corn population densities following rye (17%) or biculture (35%) cover crops compared to tillage. No-tillage did not reduce yields from emerged seedlings (per plant basis) for any cover crops. Vetch appeared to be a satisfactory N source for sweet corn when vetch N content was ≥150 kg·ha-1, and it could be used with no-tillage without yield reductions.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 611d-611
Author(s):  
Anthony F. Silvernail ◽  
Gary R. Cline

Effects of tillage, winter cover crops, and inorganic N fertilization on watermelon production were examined in a split-plot factorial experiment. Main plots received tillage or no tillage, whereas cover crops consisted of hairy vetch, winter rye, or a mix. Nitrogen treatments consisted of plus or minus addition of ammonium nitrate. Following melons not receiving inorganic N, vetch produced cover crop total N yields of ≈130 kg·ha–1, which were four times greater than those obtained with rye. Melon yields and foliar N concentrations obtained without inorganic N fertilization following vetch were similar to those obtained with N fertilization following rye. Available soil N in vetch treatments remained significantly (P < 0.05) higher than in rye treatments for ≈70 days after melon planting and was greater in tilled treatments. Tillage significantly (P < 0.05) reduced melon yields by 20% and also reduced soil temperatures compared with no-till treatments. We conclude that N fixed by vetch could sustain watermelon production and no tillage may be useful when soil erosion is a problem.


Crop Science ◽  
2021 ◽  
Author(s):  
Joanei Cechin ◽  
Maicon Fernando Schmitz ◽  
Jonathan Schwanz Torchelsen ◽  
Miria Rosa Durigon ◽  
Dirceu Agostinetto ◽  
...  

2014 ◽  
Vol 197 ◽  
pp. 31-40 ◽  
Author(s):  
Elcio L. Balota ◽  
Ademir Calegari ◽  
Andre S. Nakatani ◽  
Mark S. Coyne

1989 ◽  
Vol 53 (4) ◽  
pp. 1210-1214 ◽  
Author(s):  
J. C. Zhu ◽  
C. J. Gantzer ◽  
S. H. Anderson ◽  
E. E. Alberts ◽  
P. R. Beuselinck

Sign in / Sign up

Export Citation Format

Share Document