Winter cover crops reduce the soil seed bank and infestations of italian ryegrass in No‐Tillage System

Crop Science ◽  
2021 ◽  
Author(s):  
Joanei Cechin ◽  
Maicon Fernando Schmitz ◽  
Jonathan Schwanz Torchelsen ◽  
Miria Rosa Durigon ◽  
Dirceu Agostinetto ◽  
...  
2011 ◽  
Vol 54 (4) ◽  
pp. 683-690 ◽  
Author(s):  
Márcia Maria Mauli ◽  
Lúcia Helena Pereira Nóbrega ◽  
Danielle Medina Rosa ◽  
Gislaine Piccolo de Lima ◽  
Ricardo Ralish

Revista CERES ◽  
2016 ◽  
Vol 63 (6) ◽  
pp. 816-821 ◽  
Author(s):  
Jana Koefender ◽  
André Schoffel ◽  
Candida Elisa Manfio ◽  
Diego Pascoal Golle

ABSTRACT Cover crops are of fundamental importance for the sustainability of the no-tillage system, to ensure soil coverage and to provide benefits for the subsequent crop. The objective of this study was to evaluate the production of biomass and the content and accumulation of nutrients by winter cover crops. The experimental design used in the experiment was a randomized complete block with four replications and six treatments: oilseed radish, vetch, black oats, vetch + black oats, vetch + oilseed radish and fallow. Black oat, oilseed radish in single cultivation and black oat + vetch and vetch + oilseed radish intercroppings showed higher dry matter production. Vetch + oilseed radish intercropping demonstrates higher performance regarding cycling of nutrients, with higher accumulations of N, P, K, Ca, Mg, S, Cu, Zn, Fe, Na and B.


2018 ◽  
Vol 53 (4) ◽  
pp. 435-442 ◽  
Author(s):  
Cesar Tiago Forte ◽  
Leandro Galon ◽  
Amauri Nelson Beutler ◽  
Felipe José Menin Basso ◽  
Felipe Nonemacher ◽  
...  

Abstract: The objective of this work was to evaluate the density and composition of the soil weed seed bank when bean, corn, and soybean are cultivated in the no-tillage system (NTS) in rotation with winter cover crop species and in the conventional tillage system (CTS). The experiment was installed in a complete randomized block design with three replicates. The evaluation of the seed bank was performed on soil samples (0-10 and 10-20 cm) in four points of each experimental unit, at 15, 30, 60, and 90 days of cultivation. Bean, corn, and soybean crops were sown in the NTS with different soil cover crops in rotation, as well as in the CTS. The NTS provided a more dense and abundant soil seed bank of the species Gnaphalium spicatum and Oxalis corniculata when corn, soybean, and bean were cultivated. The species Lolium multiflorum showed lower density and less seeds in the soil seed bank when the NTS was adopted. The use of the winter cover crops black oat and cow vetch, cultivated individually or in consortium, resulted in a lower density of weed species, especially of L. multiflorum. The NTS provides a lower density of weed species in the soil seed bank than the CTS.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


2014 ◽  
Vol 197 ◽  
pp. 31-40 ◽  
Author(s):  
Elcio L. Balota ◽  
Ademir Calegari ◽  
Andre S. Nakatani ◽  
Mark S. Coyne

2014 ◽  
Vol 9 (19) ◽  
pp. 1516-1521
Author(s):  
Werncke Ivan ◽  
Nelson Melegari de Souza Samuel ◽  
Bassegio Doglas ◽  
Ferreira Santos Reginaldo ◽  
Pereira Dias Patricia ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 130
Author(s):  
Juliana Gress Bortolini ◽  
Cláudio Roberto Fonsêca Sousa Soares ◽  
Matheus Junckes Muller ◽  
Guilherme Wilbert Ferreira ◽  
Edenilson Meyer ◽  
...  

Crop systems using cover crops affect soil physical, chemical, and biological attributes, including aggregate formation. This work aims to evaluate winter cover crop species' effect on soil total organic carbon, glomalin, and aggregation in areas with onion crops in a no-tillage vegetable production system (NTVS) and conventional tillage system (CTS) for eight years. The experiment treatments were: control, with natural vegetation(NV); black oats (Avena strigosa); rye(Secale cereale);oilseed radish(Raphanus sativus);intercropped black oats and oilseed radish; intercropped rye and oilseed radish; and a conventional tillage systems area. A 33-year old adjacent secondary forest was evaluated as a reference for undisturbed conditions. We assessed soil total organic carbon, total glomalin, and easily extractable glomalin in three soil layers (0-5, 5-10, and 10-20 cm depth). Undisturbed samples were used to quantify soil aggregate stability, aggregation indexes (weighted mean diameter; geometric mean diameter), aggregate mass distribution (macroaggregates, mesoaggregates), and macroaggregate carbon contents. The conventional tillage areas had the lowest weighted mean soil aggregate diameter, geometric mean diameter, and macroaggregate mass. Those areas also had the lowest bulk soil and aggregate organic carbon contents and the lowest total and easily extractable glomalin. Winter cover crops' use resulted in a 10% higher aggregate weighted mean diameter and geometric mean diameter. Areas with cover crops had 13% higher organic carbon contents in aggregates and 17% higher macroaggregate mass than conventional tillage areas. The highest values of total and easily extracted glomalin occurred in plots with black oats. Winter cover crops, single or intercropped, improved physical attributes of soils with onion crops under not-tillage compared to conventional tillage areas.


2018 ◽  
Vol 53 (8) ◽  
pp. 909-917 ◽  
Author(s):  
Fábio Henrique Krenchinski ◽  
Victor José Salomão Cesco ◽  
Danilo Morilha Rodrigues ◽  
Leandro Paiola Albrecht ◽  
Katle Samaya Wobeto ◽  
...  

Abstract: The objective of this work was to evaluate the effect of winter cover crop species on the agronomic performance of soybean (Glycine max) cropped in succession, under a no-tillage system. The study was conducted during three crop seasons (2011/2012, 2012/2013, and 2013/2014), with the following cover crops: white oat (Avena sativa), black oat (Avena strigosa), ryegrass (Lolium multiflorum), vetch (Vicia sativa), forage radish (Raphanus sativus), the intercrop black oat + forage radish, and wheat (Triticum aestivum) as the standard management. Forage radish and the intercrop black oat + forage radish provided greater soil cover rates after 30 days of planting, as well as dry matter production in the three crop seasons. After 45 and 90 days from desiccation, however, white oat and ryegrass showed the highest soil cover rate. Black oat and the intercrop black oat + forage radish provided higher soybean yield than the standard management with wheat, in the 2012/2013 and 2013/2014 crop seasons. Winter cover crops can significantly affect soybean yield in succession, and black oat and the intercrop black oat + forage radish stand out for this purpose.


Sign in / Sign up

Export Citation Format

Share Document