scholarly journals Freezing Tolerance of Saltgrass (Distichlis spicata) Ecotypes

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1106D-1106
Author(s):  
Hrvoje Rukavina ◽  
Harrison Hughes ◽  
Yaling Qian

Efforts are ongoing at Colorado State University to develop turf-type saltgrass cultivars. Prior freezing studies have indicated variation in freezing tolerance in saltgrass lines. Therefore, this study was made to examine relative freezing tolerance of 27 saltgrass clones as related to collection sites in three zones of cold hardiness. Furthermore, these lines were evaluated for fall color retention with the intent to determine if there is a correlation with fall color and freezing tolerance. Saltgrass rhizomes were sampled in mid-winter 2004 from lines established in Fort Collins, Colo., and then subjected to a laboratory-freezing test. Saltgrass freezing tolerance was highly influenced by climate zones of clones' origin (P < 0.01) and genotypes within zones (P < 0.01). There was a high negative correlation between color retention in the fall and freezing tolerance (P < 0.01). Average freezing tolerance of saltgrass clones within zones of origin significantly differed among zones. Ranking of zones for least square mean LT50 (OC) was: zone 4 (–17.2) < zone 5 (-14.4) < zone 6 (–11.1). LT50 values in zone 4 ranged from –17.8 (accession 72) to –17.0 (accession 87). Clones in zone 5 showed LT50 values from –17.8 (accession A29) to –11.9 (accession A137). Zone 6 clones had LT50 values that ranged from –9.5 (accession C92) to –12.6 (accession C12). Large intraspecific variation in freezing tolerance may be effectively used in new cold hardy cultivar development. Environmental adaptation inherited by origin of clone is useful in defining clones' adaptation range and may along with fall color retention serve as a selection criterion in saltgrass cold hardiness improvement.

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1038A-1038
Author(s):  
Hrvoje Rukavina ◽  
Harrison Hughes ◽  
Yaling Qian

Freezing is the major abiotic stress that limits geographical distribution of warm-season turfgrasses. Prior studies have indicated variation in freezing tolerance in saltgrass clones. Therefore, this 2-year study examined the freezing tolerance of 27 saltgrass clones as related to collection sites in three zones of cold hardiness. Furthermore, these clones were evaluated for time of leaf browning in the fall with the intent to determine if there was a correlation between this trait and freezing tolerance. Rhizomes were sampled during 2004 and 2005 midwinters from clones established in Fort Collins, Colo., and then subjected to a freezing test. Saltgrass freezing tolerance was highly influenced by the climatic zone of clone origin in both years of the experiment. Clones with greater freezing tolerance turned brown earlier in fall in both seasons. Ranking of zones for the average LT50 was: zone 4 (–17.2 °C) < zone 5 (–14.4 °C) < zone 6 (–11.1 °C) in 2004 and zone 4 (–18.3 °C) < zone 5 (–15.7 °C) < zone 6 (–13.1 °C) in 2005. Clones from northern areas tolerated lower freezing temperatures better overall. This confirmed that freezing tolerance is inherited. Large intraspecific variation in freezing tolerance may be effectively used in developing cold-hardy cultivars.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 157-160 ◽  
Author(s):  
Hrvoje Rukavina ◽  
Harrison G. Hughes ◽  
Yaling Qian

Freezing is the major abiotic stress that limits geographic distribution of warm season turfgrasses. Prior studies have indicated variation in freezing tolerance in saltgrass clones. Therefore, this study examined freezing tolerance of 27 saltgrass clones as related to collection sites in three zones of cold hardiness. Furthermore, these clones were evaluated for time of leaf browning in the fall with the intent to determine if there was a correlation between this trait and freezing tolerance. Rhizomes were sampled during 2004 and 2005 midwinters from clones established in Fort Collins, Colo., and then subjected to a freezing test in a programmable freezer. Saltgrass freezing tolerance was highly influenced by the climatic zone of clone origin in both years of the experiment. Clones with greater freezing tolerance turned brown earlier in fall in both seasons. Ranking of zones for the average LT50 (lethal temperature at which 50% of rhizomes died) was: zone 4, most northern (−17.2 °C) < zone 5 (−14.4 °C), < zone 6, most southern (−11.1 °C) in 2004, and zone 4 (−18.3 °C), < zone 5 (−15.7 °C) < zone 6 (−13.1 °C) in 2005. Clones from northern areas tolerated lower freezing temperatures overall. This likely indicates that freezing tolerance is inherited. Large intraspecific variation in freezing tolerance may be effectively used in developing cold hardy cultivars.


HortScience ◽  
1991 ◽  
Vol 26 (1) ◽  
pp. 59-60 ◽  
Author(s):  
Fadi H. Karam ◽  
J. Alan Sullivan

Distinct differences in freezing tolerance among a cold-hardy wild rose species Rosa fedtschenkoana Regel., a garden rose, `Jack Frost', and their hybrid could be detected under laboratory conditions using 2-cm-long shoot segments with buds. The garden rose did not survive - SC, but the cold-hardy species survived freezing to -10C and the hybrid to –5C. One week of acclimation at 4C was adequate for R. fedtschenkoana; longer periods did not improve the rate of survival. Immersing tissue in 5%, 10%, or 20% sucrose during acclimation improved the rate of survival of R. fedtschenkoana but not of `Jack Frost'. Applications to rose breeding are discussed.


Sign in / Sign up

Export Citation Format

Share Document